65 research outputs found

    Mapping the sites of latency and reactivation by bovine herpesvirus 5 (BoHV-5) and a thymidine kinase-deleted BoHV-5 in lambs

    Full text link
    A thymidine kinase (tk)-deleted bovine herpesvirus 5 (BoHV-5tkΔ) was previously shown to establish latent infection and reactivate - even poorly - in a sheep model (Cadore et al. 2013). As TK-negative alphaherpesviruses are unlike to reactivate in neural tissue, this study investigated the sites of latency and reactivation by this recombinant in lambs. For this, groups of lambs were inoculated intranasally with the parental BoHV-5 strain (SV-507/99) or with the recombinant BoHV-5tkΔ. During latent infection (40 days post-inoculation, pi), the distribution of recombinant virus DNA in neural and non-neural tissues was similar to that of the parental virus. Parental and recombinant virus DNA was consistently detected by PCR in trigeminal ganglia (TGs); frequently in palatine and pharyngeal tonsils and, less frequently in the retropharyngeal lymph nodes. In addition, latent DNA of both viruses was detected in several areas of the brain. After dexamethasone (Dx) administration (day 40pi), the recombinant virus was barely detected in nasal secretions contrasting with marked shedding of the parental virus. In tissues of lambs euthanized at day 3 post-Dx treatment (pDx), reverse-transcription-PCR (RT-PCR) for a late viral mRNA (glycoprotein D gene) demonstrated reactivation of parental virus in neural (TGs) and lymphoid tissues (tonsils, lymph node). In contrast, recombinant virus mRNA was detected only in lymphoid tissues. These results demonstrate that BoHV-5 and the recombinant BoHV-5tkΔ do establish latent infection in neural and non-neural sites. Reactivation of the recombinant BoHV-5tkΔ, however, appeared to occur only in non-neural sites. In anyway, the ability of a tk-deleted strain to reactivate latent infection deserves attention in the context of vaccine safety

    The MIQE Guidelines: Minimum information for publications of quantitative real-time PCR Experiments

    No full text
    The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement

    Preliminary in vitro

    No full text

    Standardization of qPCR & RT-qPCR

    No full text
    qPCR and RT-qPCR are powerful enabling technologies that impel the advances made in our understanding of basic biological and disease processes as well as underpin the field of molecular diagnostics. However, the combination of ease of use and lack of rigorous standards of practice has resulted in widespread misinterpretation of data and consequent publication of erroneous conclusions. The RNA quality issue highlighted in this article is just one example of the many crucial parameters that must be addressed by guidelines that shift the focus of concern from questions regarding the technological relevance underlying a publication’s conclusion to the actual biological or diagnostic issues being addressed. MIQE and RDML have initiated a dialogue in the research community that should result in guidelines that promote absolute transparency of experiments, high confidence in results, and valid conclusions that continue to advance our understanding
    corecore