47 research outputs found
Spatial encoding in primate hippocampus during free navigation.
The hippocampus comprises two neural signals-place cells and θ oscillations-that contribute to facets of spatial navigation. Although their complementary relationship has been well established in rodents, their respective contributions in the primate brain during free navigation remains unclear. Here, we recorded neural activity in the hippocampus of freely moving marmosets as they naturally explored a spatial environment to more explicitly investigate this issue. We report place cells in marmoset hippocampus during free navigation that exhibit remarkable parallels to analogous neurons in other mammalian species. Although θ oscillations were prevalent in the marmoset hippocampus, the patterns of activity were notably different than in other taxa. This local field potential oscillation occurred in short bouts (approximately .4 s)-rather than continuously-and was neither significantly modulated by locomotion nor consistently coupled to place-cell activity. These findings suggest that the relationship between place-cell activity and θ oscillations in primate hippocampus during free navigation differs substantially from rodents and paint an intriguing comparative picture regarding the neural basis of spatial navigation across mammals
Recommended from our members
Global chemical effects of the microbiome include new bile-acid conjugations
A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis
Improving metabolic parameters of antipsychotic child treatment (IMPACT) study: rationale, design, and methods
BACKGROUND: Youth with serious mental illness may experience improved psychiatric stability with second generation antipsychotic (SGA) medication treatment, but unfortunately may also experience unhealthy weight gain adverse events. Research on weight loss strategies for youth who require ongoing antipsychotic treatment is quite limited. The purpose of this paper is to present the design, methods, and rationale of the Improving Metabolic Parameters in Antipsychotic Child Treatment (IMPACT) study, a federally funded, randomized trial comparing two pharmacologic strategies against a control condition to manage SGA-related weight gain. METHODS: The design and methodology considerations of the IMPACT trial are described and embedded in a description of health risks associated with antipsychotic-related weight gain and the limitations of currently available research. RESULTS: The IMPACT study is a 4-site, six month, randomized, open-label, clinical trial of overweight/obese youth ages 8–19 years with pediatric schizophrenia-spectrum and bipolar-spectrum disorders, psychotic or non-psychotic major depressive disorder, or irritability associated with autistic disorder. Youth who have experienced clinically significant weight gain during antipsychotic treatment in the past 3 years are randomized to either (1) switch antipsychotic plus healthy lifestyle education (HLE); (2) add metformin plus HLE; or (3) HLE with no medication change. The primary aim is to compare weight change (body mass index z-scores) for each pharmacologic intervention with the control condition. Key secondary assessments include percentage body fat, insulin resistance, lipid profile, psychiatric symptom stability (monitored independently by the pharmacotherapist and a blinded evaluator), and all-cause and specific cause discontinuation. This study is ongoing, and the targeted sample size is 132 youth. CONCLUSION: Antipsychotic-related weight gain is an important public health issue for youth requiring ongoing antipsychotic treatment to maintain psychiatric stability. The IMPACT study provides a model for pediatric research on adverse event management using state-of-the art methods. The results of this study will provide needed data on risks and benefits of two pharmacologic interventions that are already being used in pediatric clinical settings but that have not yet been compared directly in randomized trials. TRIAL REGISTRATION: Clinical Trials.gov NCT0080623
Helix periodicity, topology, and dynamics of membrane-associated α-Synuclein
The protein α-Synuclein (aS) is a synaptic vesicle-associated regulator of synaptic strength and dopamine homeostasis with a pathological role in Parkinson’s disease. The normal function of aS depends on a membrane-associated conformation that is adopted upon binding to negatively charged lipid surfaces. Previously we found that the membrane-binding domain of aS is helical and suggested that it may exhibit an unusual structural periodicity. Here we present a study of the periodicity, topology, and dynamics of detergent micelle-bound aS using paramagnetic spin labels embedded in the micelle or attached to the protein. We show that the helical region of aS completes three full turns every 11 residues, demonstrating the proposed 11/3 periodicity. We also find that the membrane-binding domain is partially buried in the micelle surface and bends toward the hydrophobic interior, but does not traverse the micelle. Deeper submersion of certain regions within the micelle, including the unique lysine-free sixth 11-residue repeat, is observed and may be functionally important. There are no long-range tertiary contacts within this domain, indicating a highly extended configuration. The backbone dynamics of the micelle-bound region are relatively uniform with a slight decrease in flexibility observed toward the C-terminal end. These results clarify the topological features of aS bound to membrane-mimicking detergent micelles, with implications for aS function and pathology
Opp Bussell and Charley Carter Interview - Part 1 (Rockcastle County)
An interview with Opp Bussell and Charley Carter by Robert M. Rennick on the place names of communities in Rockcastle County, Kentucky
DTI-identified microstructural changes in the gray matter of mice overexpressing CRF in the forebrain
Increased corticotroping releasing factor (CRF) contributes to brain circuit abnormalities associated with stress-related disorders including posttraumatic stress disorder. However, the causal relationship between CRF hypersignaling and circuit abnormalities associated with stress disorders is unclear. We hypothesized that increased CRF exposure induces changes in limbic circuit morphology and functions. An inducible, forebrain-specific overexpression of CRF (CRFOE) transgenic mouse line was used to longitudinally investigate its chronic effects on behaviors and microstructural integrity of several brain regions. Behavioral and diffusion tensor imaging studies were performed before treatment, after 3-4 wks of treatment, and again 3 mo after treatment ended to assess recovery. CRFOE was associated with increased perseverative movements only after 3 wks of treatment, as well as reduced fractional anisotropy at 3 wks in the medial prefrontal cortex and increased fractional anisotropy in the ventral hippocampus at 3 mo compared to the control group. In the dorsal hippocampus, mean diffusivity was lower in CRFOE mice both during and after treatment ended. Our data suggest differential response and recovery patterns of cortical and hippocampal subregions in response to CRFOE. Overall these findings support a causal relationship between CRF hypersignaling and microstructural changes in brain regions relevant to stress disorders