6 research outputs found

    Novel proteins associated with risk for coronary heart disease or stroke among postmenopausal women identified by in-depth plasma proteome profiling

    Get PDF
    Background: Coronary heart disease (CHD) and stroke were key outcomes in the Women's Health Initiative (WHI) randomized trials of postmenopausal estrogen and estrogen plus progestin therapy. We recently reported a large number of changes in blood protein concentrations in the first year following randomization in these trials using an in-depth quantitative proteomics approach. However, even though many affected proteins are in pathways relevant to the observed clinical effects, the relationships of these proteins to CHD and stroke risk among postmenopausal women remains substantially unknown. Methods: The same in-depth proteomics platform was applied to plasma samples, obtained at enrollment in the WHI Observational Study, from 800 women who developed CHD and 800 women who developed stroke during cohort follow-up, and from 1-1 matched controls. A plasma pooling strategy, followed by extensive fractionation prior to mass spectrometry, was used to identify proteins related to disease incidence, and the overlap of these proteins with those affected by hormone therapy was examined. Replication studies, using enzyme-linked-immunosorbent assay (ELISA), were carried out in the WHI hormone therapy trial cohorts. Results: Case versus control concentration differences were suggested for 37 proteins (nominal PP < 0.05) for CHD, with three proteins, beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), and insulin-like growth factor binding protein acid labile subunit (IGFALS) having a false discovery rate < 0.05. Corresponding numbers for stroke were 47 proteins with nominal PP < 0.05, three of which, apolipoprotein A-II precursor (APOA2), peptidyl-prolyl isomerase A (PPIA), and insulin-like growth factor binding protein 4 (IGFBP4), have a false discovery rate < 0.05. Other proteins involved in insulin-like growth factor signaling were also highly ranked. The associations of B2M with CHD (PP < 0.001) and IGFBP4 with stroke (PP = 0.005) were confirmed using ELISA in replication studies, and changes in these proteins following the initiation of hormone therapy use were shown to have potential to help explain hormone therapy effects on those diseases. Conclusions: In-depth proteomic discovery analysis of prediagnostic plasma samples identified B2M and IGFBP4 as risk markers for CHD and stroke respectively, and provided a number of candidate markers of disease risk and candidate mediators of hormone therapy effects on CHD and stroke. Clinical Trials Registration ClinicalTrials.gov identifier: NCT0000061

    Postmenopausal estrogen and progestin effects on the serum proteome

    Get PDF
    Background: Women's Health Initiative randomized trials of postmenopausal hormone therapy reported intervention effects on several clinical outcomes, with some important differences between estrogen alone and estrogen plus progestin. The biologic mechanisms underlying these effects, and these differences, have yet to be fully elucidated. Methods: Baseline serum samples were compared with samples drawn 1 year later for 50 women assigned to active hormone therapy in both the estrogen-plus-progestin and estrogen-alone randomized trials, by applying an in-depth proteomic discovery platform to serum pools from 10 women per pool. Results: In total, 378 proteins were quantified in two or more of the 10 pooled serum comparisons, by using strict identification criteria. Of these, 169 (44.7%) showed evidence (nominal P less than 0.05) of change in concentration between baseline and 1 year for one or both of estrogen-plus-progestin and estrogen-alone groups. Quantitative changes were highly correlated between the two hormone-therapy preparations. A total of 98 proteins had false discovery rates less than 0.05 for change with estrogen plus progestin, compared with 94 for estrogen alone. Of these, 84 had false discovery rates less than 0.05 for both preparations. The observed changes included multiple proteins relevant to coagulation, inflammation, immune response, metabolism, cell adhesion, growth factors, and osteogenesis. Evidence of differential changes also was noted between the hormone preparations, with the strongest evidence in growth factor and inflammation pathways. Conclusions: Serum proteomic analyses yielded a large number of proteins similarly affected by estrogen plus progestin and by estrogen alone and identified some proteins and pathways that appear to be differentially affected between the two hormone preparations; this may explain their distinct clinical effects

    Plasma Proteome Profiles Associated with Inflammation, Angiogenesis, and Cancer

    Get PDF
    Tumor development is accompanied by a complex host systemic response, which includes inflammatory and angiogenic reactions. Both tumor-derived and systemic response proteins are detected in plasma from cancer patients. However, given their non-specific nature, systemic response proteins can confound the detection or diagnosis of neoplasia. Here, we have applied an in-depth quantitative proteomic approach to analyze plasma protein changes in mouse models of subacute irritant-driven inflammation, autoreactive inflammation, and matrix associated angiogenesis and compared results to previously described findings from mouse models of polyoma middle T-driven breast cancer and Pdx1-Cre KrasG12D Ink4a/Arf lox/lox -induced pancreatic cancer. Among the confounding models, approximately 1/3 of all quantified plasma proteins exhibited a significant change in abundance compared to control mice. Of the proteins that changed in abundance, the majority were unique to each model. Altered proteins included those involved in acute phase response, inflammation, extracellular matrix remodeling, angiogenesis, and TGFβ signaling. Comparison of changes in plasma proteins between the confounder models and the two cancer models revealed proteins that were restricted to the cancer-bearing mice, reflecting the known biology of these tumors. This approach provides a basis for distinguishing between protein changes in plasma that are cancer-related and those that are part of a non-specific host response
    corecore