15 research outputs found

    Entropy production for coarse-grained dynamics

    Full text link
    Systems out of equilibrium exhibit a net production of entropy. We study the dynamics of a stochastic system represented by a Master Equation that can be modeled by a Fokker-Planck equation in a coarse-grained, mesoscopic description. We show that the corresponding coarse-grained entropy production contains information on microscopic currents that are not captured by the Fokker-Planck equation and thus cannot be deduced from it. We study a discrete-state and a continuous-state system, deriving in both the cases an analytical expression for the coarse-graining corrections to the entropy production. This result elucidates the limits in which there is no loss of information in passing from a Master Equation to a Fokker-Planck equation describing the same system. Our results are amenable of experimental verification, which could help to infer some information about the underlying microscopic processes

    Turing patterns in multiplex networks

    Get PDF
    The theory of patterns formation for a reaction-diffusion system defined on a multiplex is developed by means of a perturbative approach. The intra-layer diffusion constants act as small parameter in the expansion and the unperturbed state coincides with the limiting setting where the multiplex layers are decoupled. The interaction between adjacent layers can seed the instability of an homogeneous fixed point, yielding self-organized patterns which are instead impeded in the limit of decoupled layers. Patterns on individual layers can also fade away due to cross-talking between layers. Analytical results are compared to direct simulations

    Pattern formation for reactive species undergoing anisotropic diffusion

    Get PDF
    Turing instabilities for a two species reaction-diffusion systems is studied under anisotropic diffusion. More specifically, the diffusion constants which characterize the ability of the species to relocate in space are direction sensitive. Under this working hypothesis, the conditions for the onset of the instability are mathematically derived and numerically validated. Patterns which closely resemble those obtained in the classical context of isotropic diffusion, develop when the usual Turing condition is violated, along one of the two accessible directions of migration. Remarkably, the instability can also set in when the activator diffuses faster than the inhibitor, along the direction for which the usual Turing conditions are not matched

    Coarse-grained entropy production with multiple reservoirs: unraveling the role of time-scales and detailed balance in biology-inspired systems

    Full text link
    A general framework to describe a vast majority of biology-inspired systems is to model them as stochastic processes in which multiple couplings are in play at the same time. Molecular motors, chemical reaction networks, catalytic enzymes, and particles exchanging heat with different baths, constitute some interesting examples of such a modelization. Moreover, they usually operate out of equilibrium, being characterized by a net production of entropy, which entails a constrained efficiency. Hitherto, in order to investigate multiple processes simultaneously driving a system, all theoretical approaches deal with them independently, at a coarse-grained level, or employing a separation of time-scales. Here, we explicitly take in consideration the interplay among time-scales of different processes, and whether or not their own evolution eventually relaxes toward an equilibrium state in a given sub-space. We propose a general framework for multiple coupling, from which the well-known formulas for the entropy production can be derived, depending on the available information about each single process. Furthermore, when one of the processes does not equilibrate in its sub-space, even if much faster than all the others, it introduces a finite correction to the entropy production. We employ our framework in various simple and pedagogical examples, for which such a corrective term can be related to a typical scaling of physical quantities in play.Comment: 16 pages, 1 figure, Accepted in Physical Review Researc

    Homogeneous-per-layer patterns in multiplex networks

    Get PDF
    A new class of patterns for multiplex networks is studied, which consists in a collection of different homogeneous states each referred to a distinct layer. The associated stability diagram exhibits a tricritical point, as a function of the inter-layer diffusion coefficients. The patterns, made of alternating homogeneous layers of networks, are dynamically selected via non-homogeneous perturbations superposed to the underlying, globally homogeneous, fixed point and by properly modulating the coupling strength between layers. Furthermore, layer-homogeneous fixed points can turn unstable following a mechanism Ă  la Turing, instigated by the intra-layer diffusion. This novel class of solutions enriches the spectrum of dynamical phenomena as displayed within the variegated realm of multiplex science
    corecore