718 research outputs found

    A Preliminary Comparison of the Mechanical Properties of Chemically Cured and Ultrasonically Cured Glass Ionomer Cements, using Nano-Indentation Techniques

    Get PDF
    There is a requirement for a dental cement with properties comparable or superior to conventional glass ionomer cements (GICs) but with the command set properties of the resin modified GICs. The objective of this work was to show that the application of ultrasound to conventional Fuji IX commercial glass ionomer cement imparts a command set, whilst improving the short-term surface mechanical properties. Nano-indentation techniques were employed to highlight the improvements in hardness and creep resistance imparted to the cement through the application of ultrasound. The instant set imparted by the application of ultrasound provides improved surface hardness and creep, particularly within the first 24h after setting. The surface hardness of the chemically cured Fuji IX (176MPa) increased by an order of magnitude when set ultrasonically (2620MPa), whilst creep reduced to a negligible amount. Rapid setting allows for shorter chair time and an improved clinical technique, making restorations more convenient for both the patient and clinician. Copyright © 2001 Elsevier Science Ltd

    Interactions between magnetohydrodynamic shear instabilities and convective flows in the solar interior

    Get PDF
    Motivated by the interface model for the solar dynamo, this paper explores the complex magnetohydrodynamic interactions between convective flows and shear-driven instabilities. Initially, we consider the dynamics of a forced shear flow across a convectively-stable polytropic layer, in the presence of a vertical magnetic field. When the imposed magnetic field is weak, the dynamics are dominated by a shear flow (Kelvin-Helmholtz type) instability. For stronger fields, a magnetic buoyancy instability is preferred. If this stably stratified shear layer lies below a convectively unstable region, these two regions can interact. Once again, when the imposed field is very weak, the dynamical effects of the magnetic field are negligible and the interactions between the shear layer and the convective layer are relatively minor. However, if the magnetic field is strong enough to favour magnetic buoyancy instabilities in the shear layer, extended magnetic flux concentrations form and rise into the convective layer. These magnetic structures have a highly disruptive effect upon the convective motions in the upper layer.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    Convective intensification of magnetic fields in the quiet Sun

    Get PDF
    Kilogauss-strength magnetic fields are often observed in intergranular lanes at the photosphere in the quiet Sun. Such fields are stronger than the equipartition field B_e, corresponding to a magnetic energy density that matches the kinetic energy density of photospheric convection, and comparable with the field B_p that exerts a magnetic pressure equal to the ambient gas pressure. We present an idealised numerical model of three-dimensional compressible magnetoconvection at the photosphere, for a range of values of the magnetic Reynolds number. In the absence of a magnetic field, the convection is highly supercritical and is characterised by a pattern of vigorous, time-dependent, “granular” motions. When a weak magnetic field is imposed upon the convection, magnetic flux is swept into the convective downflows where it forms localised concentrations. Unless this process is significantly inhibited by magnetic diffusion, the resulting fields are often much greater than B_e, and the high magnetic pressure in these flux elements leads to their being partially evacuated. Some of these flux elements contain ultra-intense magnetic fields that are significantly greater than B_p. Such fields are contained by a combination of the thermal pressure of the gas and the dynamic pressure of the convective motion, and they are constantly evolving. These ultra-intense fields develop owing to nonlinear interactions between magnetic fields and convection; they cannot be explained in terms of “convective collapse” within a thin flux tube that remains in overall pressure equilibrium with its surroundings

    On Predicting the Solar Cycle using Mean-Field Models

    Full text link
    We discuss the difficulties of predicting the solar cycle using mean-field models. Here we argue that these difficulties arise owing to the significant modulation of the solar activity cycle, and that this modulation arises owing to either stochastic or deterministic processes. We analyse the implications for predictability in both of these situations by considering two separate solar dynamo models. The first model represents a stochastically-perturbed flux transport dynamo. Here even very weak stochastic perturbations can give rise to significant modulation in the activity cycle. This modulation leads to a loss of predictability. In the second model, we neglect stochastic effects and assume that generation of magnetic field in the Sun can be described by a fully deterministic nonlinear mean-field model -- this is a best case scenario for prediction. We designate the output from this deterministic model (with parameters chosen to produce chaotically modulated cycles) as a target timeseries that subsequent deterministic mean-field models are required to predict. Long-term prediction is impossible even if a model that is correct in all details is utilised in the prediction. Furthermore, we show that even short-term prediction is impossible if there is a small discrepancy in the input parameters from the fiducial model. This is the case even if the predicting model has been tuned to reproduce the output of previous cycles. Given the inherent uncertainties in determining the transport coefficients and nonlinear responses for mean-field models, we argue that this makes predicting the solar cycle using the output from such models impossible.Comment: 22 Pages, 5 Figures, Preprint accepted for publication in Ap

    Concentrating Membrane Proteins Using Asymmetric Traps and AC Electric Fields

    Get PDF
    Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a “nested trap” and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins

    The headgroup orientation of dimyristoylphosphatidylinositol-4-phosphate in mixed lipid bilayers: a neutron diffraction study

    Get PDF
    AbstractThe trisodium salt of dimyristoylphosphatidylinositol-4-phosphate (DMPI-4P) has been synthesised specifically deuterated at particular sites in the headgroup. These materials have been used in neutron diffraction experiments, which successfully located the position (depth) of each of these deuterated sites to within ±0.5 Å in a mixed model membrane (a 1:1 molar mixture of DMPI-4P with dimyristoyl-phosphatidylcholine, DMPC, in the Lα phase, hydrated to the level of 28 water molecules per lipid molecule). The diffracted intensities were measured at four different D2O/H2O ratios and six orders of diffraction were obtained. These data sets, in conjunction with computer modelling, have been used to determine the orientation of the inositol ring of DMPI-4P, localising each vertical H–H distance to within approximately ±0.03 Å. The orientation of the inositol ring is found to be one in which the C5 hydroxyl is extended out into the aqueous medium. This is, therefore, the most accessible site for water-borne reagents. This may be significant for the important pathway leading from PI-4P to PI-4,5P2. On the assumption that the P/ODAG bond is orientated parallel to the bilayer normal, these results are consistent with two possible conformations for the portion of the headgroup connecting the diacylglycerol to the inositol ring. Distinction between these two is difficult, but one may be favoured since the other involves close atom–atom contacts
    corecore