37 research outputs found
Reduced functional measure of cardiovascular reserve predicts admission to critical care unit following kidney transplantation
Background: There is currently no effective preoperative assessment for patients undergoing kidney transplantation that is
able to identify those at high perioperative risk requiring admission to critical care unit (CCU). We sought to determine if
functional measures of cardiovascular reserve, in particular the anaerobic threshold (VO2AT) could identify these patients.
Methods: Adult patients were assessed within 4 weeks prior to kidney transplantation in a University hospital with a 37-bed
CCU, between April 2010 and June 2012. Cardiopulmonary exercise testing (CPET), echocardiography and arterial
applanation tonometry were performed.
Results: There were 70 participants (age 41.7614.5 years, 60% male, 91.4% living donor kidney recipients, 23.4% were
desensitized). 14 patients (20%) required escalation of care from the ward to CCU following transplantation. Reduced
anaerobic threshold (VO2AT) was the most significant predictor, independently (OR = 0.43; 95% CI 0.27–0.68; p,0.001) and
in the multivariate logistic regression analysis (adjusted OR = 0.26; 95% CI 0.12–0.59; p = 0.001). The area under the receiveroperating-
characteristic curve was 0.93, based on a risk prediction model that incorporated VO2AT, body mass index and
desensitization status. Neither echocardiographic nor measures of aortic compliance were significantly associated with CCU
admission.
Conclusions: To our knowledge, this is the first prospective observational study to demonstrate the usefulness of CPET as a
preoperative risk stratification tool for patients undergoing kidney transplantation. The study suggests that VO2AT has the
potential to predict perioperative morbidity in kidney transplant recipients
Late-acting dominant lethal genetic systems and mosquito control
BACKGROUND: Reduction or elimination of vector populations will tend to reduce or eliminate transmission of vector-borne diseases. One potential method for environmentally-friendly, species-specific population control is the Sterile Insect Technique (SIT). SIT has not been widely used against insect disease vectors such as mosquitoes, in part because of various practical difficulties in rearing, sterilization and distribution. Additionally, vector populations with strong density-dependent effects will tend to be resistant to SIT-based control as the population-reducing effect of induced sterility will tend to be offset by reduced density-dependent mortality. RESULTS: We investigated by mathematical modeling the effect of manipulating the stage of development at which death occurs (lethal phase) in an SIT program against a density-dependence-limited insect population. We found late-acting lethality to be considerably more effective than early-acting lethality. No such strains of a vector insect have been described, so as a proof-of-principle we constructed a strain of the principal vector of the dengue and yellow fever viruses, Aedes (Stegomyia) aegypti, with the necessary properties of dominant, repressible, highly penetrant, late-acting lethality. CONCLUSION: Conventional SIT induces early-acting (embryonic) lethality, but genetic methods potentially allow the lethal phase to be tailored to the program. For insects with strong density-dependence, we show that lethality after the density-dependent phase would be a considerable improvement over conventional methods. For density-dependent parameters estimated from field data for Aedes aegypti, the critical release ratio for population elimination is modeled to be 27% to 540% greater for early-acting rather than late-acting lethality. Our success in developing a mosquito strain with the key features that the modeling indicated were desirable demonstrates the feasibility of this approach for improved SIT for disease control
Acceptability and feasibility of magnetic femoral nerve stimulation in older, functionally impaired patients
Abstract Objective Magnetic femoral nerve stimulation to test muscle function has been largely unexplored in older people. We assessed acceptability, feasibility, along with reproducibility and correlation with other physical function measures. Results Study 1 recruited older people with sarcopenia. Stimulation was performed at baseline and 2 weeks along with six minute walk (6MW), maximum voluntary quadriceps contraction, short physical performance battery and grip strength. Acceptability was measured using visual analog scales. Study 2 used baseline data from a trial of older people. We correlated stimulation results with 6MW, maximal voluntary contraction and muscle mass. Maximum quadriceps twitch tension was measured in both studies, evoked using biphasic magnetic stimulation of the femoral nerve. In study 1 (n = 12), magnetic stimulation was well tolerated with mean discomfort rating of 9% (range 0–40%) on a visual analog scale. Reproducibility was poor (intraclass correlation coefficient 0.06; p = 0.44). Study 2 (n = 64) showed only weak to moderate correlations for maximum quadriceps twitch tension with other measures of physical function (6 minute walk test r = 0.24, p = 0.06; maximal voluntary contraction r = 0.26; p = 0.04). We conclude that magnetic femoral nerve stimulation is acceptable and feasible but poorly reproducible in older, functionally impaired people
Rapid synchronous type 1 IFN and virus-specific T cell responses characterize first wave non-severe SARS-CoV-2 infections
Effective control of SARS-CoV-2 infection on primary exposure may reveal correlates of protective immunity to future variants, but we lack insights into immune responses before or at the time virus is first detected. We use blood transcriptomics, multiparameter flow cytometry, and T cell receptor (TCR) sequencing spanning the time of incident non-severe infection in unvaccinated virus-naive individuals to identify rapid type 1 interferon (IFN) responses common to other acute respiratory viruses and cell proliferation responses that discriminate SARS-CoV-2 from other viruses. These peak by the time the virus is first detected and sometimes precede virus detection. Cell proliferation is most evident in CD8 T cells and associated with specific expansion of SARS-CoV-2-reactive TCRs, in contrast to virus-specific antibodies, which lag by 1–2 weeks. Our data support a protective role for early type 1 IFN and CD8 T cell responses, with implications for development of universal T cell vaccines
The sixth data release of the Radial Velocity Experiment (RAVE). I. Survey description, spectra and radial velocities
The Radial Velocity Experiment (RAVE) is a magnitude-limited (9<I<12)
spectroscopic survey of Galactic stars randomly selected in the southern
hemisphere. The RAVE medium-resolution spectra (R~7500) cover the Ca-triplet
region (8410-8795A). The 6th and final data release (DR6 or FDR) is based on
518387 observations of 451783 unique stars. RAVE observations were taken
between 12 April 2003 and 4 April 2013. Here we present the genesis, setup and
data reduction of RAVE as well as wavelength-calibrated and flux-normalized
spectra and error spectra for all observations in RAVE DR6. Furthermore, we
present derived spectral classification and radial velocities for the RAVE
targets, complemented by cross matches with Gaia DR2 and other relevant
catalogs. A comparison between internal error estimates, variances derived from
stars with more than one observing epoch and a comparison with radial
velocities of Gaia DR2 reveals consistently that 68% of the objects have a
velocity accuracy better than 1.4 km/s, while 95% of the objects have radial
velocities better than 4.0 km/s. Stellar atmospheric parameters, abundances and
distances are presented in subsequent publication. The data can be accessed via
the RAVE Web (http://rave-survey.org) or the Vizier database.Comment: 32 pages, 11 figures, accepted for publication to A
Recommended from our members
Safeguarding pollinators and their values to human well-being
Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer
and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem
stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change,
pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are
well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective
policy and management responses can be implemented to safeguard pollinators and sustain pollination services
A digital microfluidic system for serological immunoassays in remote settings
Serosurveys are useful for assessing population susceptibility to vaccine-preventable disease outbreaks. Although at-risk populations in remote areas could benefit from this type of information, they face several logistical barriers to implementation, such as lack of access to centralized laboratories, cold storage, and transport of samples. We describe a potential solution: a compact and portable, field-deployable, point-of-care system relying on digital microfluidics that can rapidly test a small volume of capillary blood for disease-specific antibodies. This system uses inexpensive, inkjet-printed digital microfluidic cartridges together with an integrated instrument to perform enzyme-linked immunosorbent assays (ELISAs). We performed a field validation of the system’s analytical performance at Kakuma refugee camp, a remote setting in northwestern Kenya, where we tested children aged 9 to 59 months and caregivers for measles and rubella immunoglobulin G (IgG). The IgG assays were determined to have sensitivities of 86% [95% confidence interval (CI), 79 to 91% (measles)] and 81% [95% CI, 73 to 88% (rubella)] and specificities of 80% [95% CI, 49 to 94% (measles)] and 91% [95% CI, 76 to 97% (rubella)] (measles, n = 140; rubella, n = 135) compared with reference tests (measles IgG and rubella IgG ELISAs from Siemens Enzygnost) conducted in a centralized laboratory. These results demonstrate a potential role for this point-of-care system in global serological surveillance, particularly in remote areas with limited access to centralized laboratories
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
25th annual computational neuroscience meeting: CNS-2016
The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong