590 research outputs found

    Thickness Estimation of Epitaxial Graphene on SiC using Attenuation of Substrate Raman Intensity

    Full text link
    A simple, non-invasive method using Raman spectroscopy for the estimation of the thickness of graphene layers grown epitaxially on silicon carbide (SiC) is presented, enabling simultaneous determination of thickness, grain size and disorder using the spectra. The attenuation of the substrate Raman signal due to the graphene overlayer is found to be dependent on the graphene film thickness deduced from X-ray photoelectron spectroscopy and transmission electron microscopy of the surfaces. We explain this dependence using an absorbing overlayer model. This method can be used for mapping graphene thickness over a region and is capable of estimating thickness of multilayer graphene films beyond that possible by XPS and Auger electron spectroscopy (AES).Comment: 14 pages, 9 figure

    Alterations in Task-Related Brain Activation in Children, Adolescents and Young Adults at Familial High-Risk for Schizophrenia or Bipolar Disorder - A Systematic Review.

    Get PDF
    Children, adolescents, and young adults with at least one first-degree relative [familial high-risk (FHR)] with either schizophrenia (SZ) or bipolar disorder (BD) have a one-in-two risk of developing a psychiatric disorder. Here, we review functional magnetic resonance imaging (fMRI) studies which examined task-related brain activity in young individuals with FHR-SZ and FHR-BD. A systematic search identified all published task-related fMRI studies in children, adolescents, and young adults below an age of 27 years with a first-degree relative with SZ or BD, but without manifest psychotic or affective spectrum disorder themselves. The search identified 19 cross-sectional fMRI studies covering four main cognitive domains: 1) working memory (n = 3), 2) cognitive control (n = 4), 3) reward processing (n = 3), and 4) emotion processing (n = 9). Thirteen studies included FHR-BD, five studies included FHR-SZ, and one study included a pooled FHR group. In general, task performance did not differ between the respective FHR groups and healthy controls, but 18 out of the 19 fMRI studies revealed regional alterations in task-related activation. Brain regions showing group differences in peak activation were regions associated with the respective task domain and showed little overlap between FHR-SZ and FHR-BD. The low number of studies, together with the low number of subjects, and the substantial heterogeneity of employed methodological approaches within the domain of working memory, cognitive control, and reward processing impedes finite conclusions. Emotion processing was the most investigated task domain in FHR-BD. Four studies reported differences in activation of the amygdala, and two studies reported differences in activation of inferior frontal/middle gyrus. Together, these studies provide evidence for altered brain processing of emotions in children, adolescents, and young adults at FHR-BD. More studies of higher homogeneity, larger sample sizes and with a longitudinal study design are warranted to prove a shared or specific FHR-related endophenotypic brain activation in young first-degree relatives of individuals with SZ or BD, as well as to pinpoint specific alterations in brain activation during cognitive-, emotional-, and reward-related tasks

    Molecular toolkit development for gene expression and gene silencing technologies in the homobasidiomycete Fungi Agaricus bisporus and Coprinus cinereus

    Get PDF
    Resumen de la conferencia presentada al VI Meeting on Genetics and Cellular Biology of Basidiomycetes (GCBB-VI), organizado por y celebrado en la Universidad Pública de Navarra el 3-6 de junio de 2005.We have developed a “Molecular Toolkit” comprising interchangeable promoters and marker genes to facilitate transformation of homobasidiomycete mushrooms and subsequent analysis of gene expression. We will describe the testing of a wide range of promoters in both Agaricus bisporus and Coprinus cinereus when linked to a range of selectable and visual marker genes, along with the parameters required to successfully achieve foreign gene expression within these organisms. It has been previously demonstrated that a prerequisite for GFP expression in A. bisporus and C. cinereus is an intron. We describe the construction of an expression vector containing a multiple cloning site linked to an intron thus allowing different genes to be easily expressed in A. bisporus and C. cinereus. We report on the development of gene silencing technologies within A. bisporus and C. cinereus. In particular the serine protease has been targeted for gene silencing in A. bisporus. Serine protease has been implicated in post-harvest and age-related senescence of sporophores. On harvesting, mushrooms degenerate rapidly to give browned caps and loss of texture in the fruit body, and such problems can dramatically reduce sale ability of the mushrooms. Suppression of genes involved in these pathways could increase mushroom shelf-life and profitability for mushroom growers, or help to further elucidate the complex biochemical pathways involved in post-harvest degradation. Progress will also be reported on gene silencing in C. cinereus

    Electrochemical deposition of bismuth telluride thick layers onto nickel

    Get PDF
    Bismuth telluride (Bi2Te3) is the currently best performing thermoelectric (TE) material in commercial TE devices for refrigeration and waste heat recovery up to 200 °C. Up to 800 μm thick, compact, uniform and stoichiometric Bi2Te3 films were synthesized by pulsed electrodeposition from 2 M nitric acid baths containing bismuth and tellurium dioxide on 1 cm2 nickel (Ni) substrates at average film growth rates of ~ 50 μm/h. Pre-treatment of the Ni substrate was found to significantly enhance the adhesion of Bi2Te3 material onto Ni while pulsed electrodeposition was used to increase the compactness of the material. To maintain a homogeneous composition across the thickness of the films, a sacrificial Bi2Te3 anode was employed. All deposits produced were n-type with a Seebeck coefficient of up to − 80 μV/K and an electrical conductivity of ~ 330 S/cm at room temperature

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
    corecore