26 research outputs found

    The Influence of Carbon Subsidies on Stream Chemistry and Function in Northern Michigan Streams

    Full text link
    Headwater streams are largely allochthonous, relying on subsidies to fuel productivity. Carbon inputs are important to streams not only because they fuel productivity but they also strongly affect many instream biological processes and physiochemical characteristics. Terrestrial ecosystems contribute a large component of carbon to streams which varies in quantity and quality, possibly affecting instream carbon concentrations and the biological uptake of that carbon. In addition, tributaries of the Great Lakes provide a unique opportunity to examine carbon sources and sinks more frequently associated with marine environments. For example, potomodromous fish which migrate between the Great Lakes and its tributaries to spawn may deliver a pulse of lake derived nutrients similar to the well-documented pulse of ocean-derived nutrients associated with anadromous fish moving between the ocean and rivers. The goal of this study was to examine linkages between these allochthonous carbon inputs and steam functioning in a remote largely undeveloped temperate forest. Terrestrial inputs were evaluated by examining dissolved organic carbon (DOC) concentration in 26 streams, and comparing them against riparian and watershed land cover. At the riparian level, forest (p<0.001), agriculture (p<0.001) and wetlands (p<0.001) all significantly influenced instream DOC concentrations. However, at the watershed level, only agriculture explained a significant amount of variation in DOC (p<0.001). Watershed land cover was also compared to carbon spiraling turnover length although no significant effects were detected. Fish derived inputs were evaluated via an evaluation of nutrient influences associated with the spawning migrations of longnose and white sucker in the Salmon Trout River. In total, 1,474 suckers were recorded swimming upstream in 2008. Whole stream metabolism was measured before and after the run, upstream and downstream of a barrier that prevented fish passage to distinguish between the effect of fish-derived carbon and possible temporal effects. Although not found to be significant, there was an obvious spike in metabolism at the downstream site during the run, which may indicate an effect of the sucker runs. The findings suggest that these two sources of allochthonous carbon are important to stream functioning and anthropogenic alterations of these inputs have the potential to affect the aquatic carbon cycle.Master of ScienceNatural Resources and EnvironmentUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/64481/1/Burtner 2009.pd

    Spatial-temporal variability of in situ cyanobacteria vertical structure in Western Lake Erie: Implications for remote sensing observations

    Get PDF
    Remote sensing has provided expanded temporal and spatial range to the study of harmful algal blooms (cyanoHABs) in western Lake Erie, allowing for a greater understanding of bloom dynamics than is possible through in situ sampling. However, satellites are limited in their ability to specifically target cyanobacteria and can only observe the water within the first optical depth. This limits the ability of remote sensing to make conclusions about full water column cyanoHAB biomass if cyanobacteria are vertically stratified. FluoroProbe data were collected at nine stations across western Lake Erie in 2015 and 2016 and analyzed to characterize spatio-temporal variability in cyanobacteria vertical structure. Cyanobacteria were generally homogenously distributed during the growing season except under certain conditions. As water depth increased and high surface layer concentrations were observed, cyanobacteria were found to be more vertically stratified and the assumption of homogeneity was less supported. Cyanobacteria vertical distribution was related to wind speed and wave height, with increased stratification at low wind speeds (bathymetry and environmental conditions could lead to improved biomass estimates. Additionally, cyanobacteria contributions to total chlorophyll-a were shown to change throughout the season and across depth, suggesting the need for remote sensing algorithms to specifically identify cyanobacteria

    Bio-optical Properties of Cyanobacteria Blooms in Western Lake Erie

    Get PDF
    There is a growing use of remote sensing observations for detecting and quantifying freshwater cyanobacteria populations, yet the inherent optical properties of these communities in natural settings, fundamental to bio-optical algorithms, are not well known. Toward bridging this knowledge gap, we measured a full complement of optical properties in western Lake Erie during cyanobacteria blooms in the summers of 2013 and 2014. Our measurements focus attention on the optical uniqueness of cyanobacteria blooms, which have consequences for remote sensing and bio-optical modeling. We found the cyanobacteria blooms in the western basin during our field work were dominated by Microcystis, while the waters in the adjacent central basin were dominated by Planktothrix. Chlorophyll concentrations ranged from 1 to over 135 ÎŒg/L across the study area with the highest concentrations associated with Microcystis in the western basin. We observed large, amorphous colonial Microcystis structures in the bloom area characterized by high phytoplankton absorption and high scattering coefficients with a mean particle backscatter ratio at 443 nm \u3e 0.03, which is higher than other plankton types and more comparable to suspended inorganic sediments. While our samples contained mixtures of both, our analysis suggests high contributions to the measured scatter and backscatter coefficients from cyanobacteria. Our measurements provide new insights into the optical properties of cyanobacteria blooms, and indicate that current semi-analytic models are likely to have problems resolving a closed solution in these types of waters as many of our observations are beyond the range of existing model components. We believe that different algorithm or model approaches are needed for these conditions, specifically for phytoplankton absorption and particle backscatter components. From a remote sensing perspective, this presents a challenge not only in terms of a need for new algorithms, but also for determining when to apply the best algorithm for a given situation. These results are new in the sense that they represent a complete description of the optical properties of freshwater cyanobacteria blooms, and are likely to be representative of bloom conditions for other systems containing Microcystis cells and colonies

    GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.Additional co-authors: Courtney Di Vittorio, Nathan Drayson, Reagan M. Errera, Virginia Fernandez, Dariusz Ficek, CĂ©dric G. Fichot, Peter Gege, Claudia Giardino, Anatoly A. Gitelson, Steven R. Greb, Hayden Henderson, Hiroto Higa, Abolfazl Irani Rahaghi, CĂ©dric Jamet, Thomas Jordan, Kersti Kangro, Jeremy A. Kravitz, Arne S. Kristoffersen, Raphael Kudela, Lin Li, Martin Ligi, Hubert Loisel, Steven Lohrenz, Ronghua Ma, Daniel A. Maciel, Tim J. Malthus, Bunkei Matsushita, Mark Matthews, Camille Minaudo, Deepak R. Mishra, Sachidananda Mishra, Tim Moore, Wesley J. Moses, HĂ  Nguyễn, Evlyn M. L. M. Novo, StĂ©fani Novoa, Daniel Odermatt, David M. O’Donnell, Leif G. Olmanson, Michael Ondrusek, Natascha Oppelt, Sylvain Ouillon, Waterloo Pereira Filho, Stefan Plattner, Antonio Ruiz VerdĂș, Salem I. Salem, John F. Schalles, Stefan G. H. Simis, Eko Siswanto, Brandon Smith, Ian Somlai-Schweiger, Mariana A. Soppa, Elinor Tessin, Hendrik J. van der Woerd, Andrea Vander Woude, Ryan A. Vandermeulen, Vincent Vantrepotte, Marcel R. Wernand, Kyana Young & Linwei Yu

    GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring

    GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring

    Potential therapeutic approaches for modulating expression and accumulation of defective lamin A in laminopathies and age-related diseases

    Full text link

    Variation in resource competition traits among Microcystis strains is affected by their microbiomes

    No full text
    Abstract Freshwater harmful algal blooms are often dominated by Microcystis, a phylogenetically cohesive group of cyanobacteria marked by extensive genetic and physiological diversity. We have previously shown that this genetic diversity and the presence of a microbiome of heterotrophic bacteria influences competitive interactions with eukaryotic phytoplankton. In this study, we sought to explain these observations by characterizing Monod equation parameters for resource usage (maximum growth rate ÎŒmax, half‐saturation value for growth Ks, and quota) as a function of N and P levels for four strains (NIES‐843, PCC 9701, PCC 7806 [WT], and PCC 7806 ΔmcyB) in presence and absence of a microbiome derived from Microcystis isolated from Lake Erie. Results indicated limited differences in maximum growth rates but more pronounced differences in half‐saturation values among Microcystis strains. The largest impact of the microbiome was reducing the minimal nitrogen concentration sustaining growth and reducing half saturation values, with variable results depending on the Microcystis strain. Microcystis strains also differed from each other in their N and P quotas and the extent to which microbiome presence affected them. Our data highlight the importance of the microbiome in altering Microcystis‐intrinsic traits, strain competitive hierarchies, and thus bloom dynamics. As quota, ÎŒmax, and Ks are commonly used in models for harmful algal blooms, our data suggest that model improvement may be possible by incorporating genotype dependencies of resource‐use parameters

    Verrucomicrobia are prevalent in north-temperate freshwater lakes and display class-level preferences between lake habitats

    No full text
    <div><p>The bacterial phylum Verrucomicrobia was formally described two decades ago and originally believed to be a minor member of many ecosystems; however, it is now recognized as ubiquitous and abundant in both soil and aquatic systems. Nevertheless, knowledge of the drivers of its relative abundance and within-phylum habitat preferences remains sparse, especially in lake systems. Here, we documented the distribution of Verrucomicrobia in 12 inland lakes in Southeastern Michigan, a Laurentian Great Lake (Lake Michigan), and a freshwater estuary, which span a gradient in lake sizes, depths, residence times, and trophic states. A wide range of physical and geochemical parameters was covered by sampling seasonally from the surface and bottom of each lake, and by separating samples into particle-associated and free-living fractions. On average, Verrucomicrobia was the 4<sup>th</sup> most abundant phylum (range 1.7–41.7%). Fraction, season, station, and depth explained up to 70% of the variance in Verrucomicrobia community composition and preference for these habitats was phylogenetically conserved at the class-level. When relative abundance was linearly modeled against environmental data, Verrucomicrobia and non-Verrucomicrobia bacterial community composition correlated to similar quantitative environmental parameters, although there were lake system-dependent differences and > 55% of the variance remained unexplained. A majority of the phylum exhibited preference for the particle-associated fraction and two classes (Opitutae and Verrucomicrobiae) were identified to be more abundant during the spring season. This study highlights the high relative abundance of Verrucomicrobia in north temperate lake systems and expands insights into drivers of within-phylum habitat preferences of the Verrucomicrobia.</p></div
    corecore