242 research outputs found

    Levels of circulating myeloid subpopulations and of heme oxygenase-1 do not predict CD4+ T cell recovery after the initiation of antiretroviral therapy for HIV disease

    Full text link
    The level (or frequency) of circulating monocyte subpopulations such as classical (CD14(hi)CD16(-)) and non-classical (CD14(dim)CD16(+)) monocytes varies during the course of HIV disease progression and antiretroviral therapy (ART). We hypothesized that such variation and/or differences in the degree to which these cells expressed the immunoregulatory enzyme, heme oxygenase-1 (HO-1), would be associated with CD4(+) T cell recovery after the initiation of ART. This hypothesis was tested in a cross-sectional study of four groups of HIV-infected subjects, including those who were seronegative, untreated virologic controllers [detectable viral load (VL) of <1000 copies/mL], untreated virologic non-controllers [VL > 10,000 copies/mL], and ART-mediated virologic controllers [VL < 75 copies/mL]. A longitudinal analysis of ART-treated subjects was also performed along with regression analysis to determine which biomarkers were associated with and/or predictive of CD4(+) T cell recovery. Suppressive ART was associated with increased levels of classical monocyte subpopulations (CD14(hi)CD16(-)) and decreased levels of non-classical monocyte populations (CD14(dim)CD16(+)). Among peripheral blood mononuclear cells (PBMCs), HO-1 was found to be most highly up-regulated in CD14(+) monocytes after ex vivo stimulation. Neither the levels of monocyte subpopulations nor of HO-1 expression in CD14(+) monocytes were significantly associated with the degree of CD4(+) T cell recovery. Monocyte subpopulations and HO-1 gene expression were, however, restored to normal levels by suppressive ART. These results suggest that the level of circulating monocyte subpopulations and their expression of HO-1 have no evident relationship to CD4(+) T cell recovery after the initiation of ART

    Benchmarking airborne laser scanning tree segmentation algorithms in broadleaf forests shows high accuracy only for canopy trees

    Get PDF
    Individual tree segmentation from airborne laser scanning data is a longstanding and important challenge in forest remote sensing. Tree segmentation algorithms are widely available, but robust intercomparison studies are rare due to the difficulty of obtaining reliable reference data. Here we provide a benchmark data set for temperate and tropical broadleaf forests generated from labelled terrestrial laser scanning data. We compared the performance of four widely used tree segmentation algorithms against this benchmark data set. All algorithms performed reasonably well on the canopy trees. The point cloud-based algorithm AMS3D (Adaptive Mean Shift 3D) had the highest overall accuracy, closely followed by the 2D raster based region growing algorithm Dalponte2016 +. However, all algorithms failed to accurately segment the understory trees. This result was consistent across both forest types. This study emphasises the need to assess tree segmentation algorithms directly using benchmark data, rather than comparing with forest indices such as biomass or the number and size distribution of trees. We provide the first openly available benchmark data set for tropical forests and we hope future studies will extend this work to other regions

    CD161 contributes to prenatal immune suppression of IFNγ-producing PLZF^{+} T cells

    Get PDF
    BACKGROUND: While the human fetal immune system defaults to a program of tolerance, there is a concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response, with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown. METHODS: We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with proinflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared with that of healthy term controls. RESULTS: We identified a transcriptionally distinct population of CD4^{+} T cells characterized by expression of the transcription factor promyelocytic leukemia zinc finger (PLZF). PLZF^{+}CD4^{+} T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced proinflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFN-γ in a fetal-specific manner. IFN-γ–producing PLZF^{+}CD4^{+} T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation. CONCLUSION: Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies. FUNDING: This work was supported by the UCSF Clinical and Translational Science Institute (CTSI) Pilot Award for Basic and Translational Investigators (2014908), UCSF (K12HD072222), the NIAID (K08 AI128007 and 1F31AI136336-01), a National Science Foundation (NSF) Graduate Research Fellowship (1650113 ), and an Academy for Medical Sciences Clinical Lecturer grant (535274)

    One Fungus = One Name: DNA and fungal nomenclature twenty years after PCR

    Get PDF
    Some fungi with pleomorphic life-cycles still bear two names despite more than 20 years of molecular phylogenetics that have shown how to merge the two systems of classification, the asexual “Deuteromycota” and the sexual “Eumycota”. Mycologists have begun to flout nomenclatorial regulations and use just one name for one fungus. The International Code of Botanical Nomenclature (ICBN) must change to accommodate current practice or become irrelevant. The fundamental difference in the size of fungi and plants had a role in the origin of dual nomenclature and continues to hinder the development of an ICBN that fully accommodates microscopic fungi. A nomenclatorial crisis also looms due to environmental sequencing, which suggests that most fungi will have to be named without a physical specimen. Mycology may need to break from the ICBN and create a MycoCode to account for fungi known only from environmental nucleic acid sequence (i.e. ENAS fungi)

    Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human

    Get PDF
    Background: Despite the significance of chicken as a model organism, our understanding of the chicken transcriptome is limited compared to human. This issue is common to all non-human vertebrate annotations due to the difficulty in transcript identification from short read RNAseq data. While previous studies have used single molecule long read sequencing for transcript discovery, they did not perform RNA normalization and 5'-cap selection which may have resulted in lower transcriptome coverage and truncated transcript sequences. Results: We sequenced normalised chicken brain and embryo RNA libraries with Pacific Bioscience Iso-Seq. 5' cap selection was performed on the embryo library to provide methodological comparison. From these Iso-Seq sequencing projects, we have identified 60 k transcripts and 29 k genes within the chicken transcriptome. Of these, more than 20 k are novel lncRNA transcripts with ~3 k classified as sense exonic overlapping lncRNA, which is a class that is underrepresented in many vertebrate annotations. The relative proportion of alternative transcription events revealed striking similarities between the chicken and human transcriptomes while also providing explanations for previously observed genomic differences. Conclusions: Our results indicate that the chicken transcriptome is similar in complexity compared to human, and provide insights into other vertebrate biology. Our methodology demonstrates the potential of Iso-Seq sequencing to rapidly expand our knowledge of transcriptomics

    Imaging and Modeling of Myocardial Metabolism

    Get PDF
    Current imaging methods have focused on evaluation of myocardial anatomy and function. However, since myocardial metabolism and function are interrelated, metabolic myocardial imaging techniques, such as positron emission tomography, single photon emission tomography, and magnetic resonance spectroscopy present novel opportunities for probing myocardial pathology and developing new therapeutic approaches. Potential clinical applications of metabolic imaging include hypertensive and ischemic heart disease, heart failure, cardiac transplantation, as well as cardiomyopathies. Furthermore, response to therapeutic intervention can be monitored using metabolic imaging. Analysis of metabolic data in the past has been limited, focusing primarily on isolated metabolites. Models of myocardial metabolism, however, such as the oxygen transport and cellular energetics model and constraint-based metabolic network modeling, offer opportunities for evaluation interactions between greater numbers of metabolites in the heart. In this review, the roles of metabolic myocardial imaging and analysis of metabolic data using modeling methods for expanding our understanding of cardiac pathology are discussed

    APOE ε4 moderates abnormal CSF-abeta-42 levels, while neurocognitive impairment is associated with abnormal CSF tau levels in HIV+ individuals – a cross-sectional observational study

    Get PDF
    Background: Cerebrospinal fluid (CSF) biomarkers Aβ1-42, t-tau and p-tau have a characteristic pattern in Alzheimer’s Disease (AD). Their roles in HIV-associated neurocognitive disorder (HAND) remains unclear. Methods: Adults with chronic treated HIV disease were recruited (n = 43, aged 56.7 ± 7.9; 32% aged 60+; median HIV duration 20 years, \u3e95% plasma and CSF HIV RNA \u3c50 cp/mL, on cART for a median 24 months). All underwent standard neuropsychological testing (61% had HAND), APOE genotyping (30.9% carried APOE ε4 and 7.1% were ε4 homozygotes) and a lumbar puncture. Concentrations of Aβ1-42, t-tau and p-tau were assessed in the CSF using commercial ELISAs. Current neurocognitive status was defined using the continuous Global Deficit Score, which grades impairment in clinically relevant categories. History of HAND was recorded. Univariate correlations informed multivariate models, which were corrected for nadir CD4-T cell counts and HIV duration. Results: Carriage of APOE ε4 predicted markedly lower levels of CSF Aβ1-42 in univariate (r = -.50; p = .001) and multivariate analyses (R2 = .25; p \u3c .0003). Greater levels of neurocognitive impairment were associated with higher CSF levels of p-tau in univariate analyses (r = .32; p = .03) and multivariate analyses (R2 = .10; p = .03). AD risk prediction cut-offs incorporating all three CSF biomarkers suggested that 12.5% of participants had a high risk for AD. Having a CSF-AD like profile was more frequent in those with current (p = .05) and past HIV-associated dementia (p = .03). Conclusions: Similarly to larger studies, APOE ε4 genotype was not directly associated with HAND, but moderated CSF levels of Aβ1-42 in a minority of participants. In the majority of participants, increased CSF p-tau levels were associated with current neurocognitive impairment. Combined CSF biomarker risk for AD in the current HIV+ sample is more than 10 times greater than in the Australian population of the same age. Larger prospective studies are warranted
    corecore