1,230 research outputs found

    Organotypic Culture of Neonatal Murine Inner Ear Explants

    Get PDF
    The inner ear is a complex organ containing highly specialised cell types and structures that are critical for sensing sound and movement. In vivo, the inner ear is difficult to study due to the osseous nature of the otic capsule and its encapsulation within an intricate bony labyrinth. As such, mammalian inner ear explants are an invaluable tool for the study and manipulation of the complex intercellular connections, structures, and cell types within this specialised organ. The greatest strength of this technique is that the complete organ of Corti, or peripheral vestibular organs including hair cells, supporting cells and accompanying neurons, is maintained in its in situ form. The greatest weakness of in vitro hair cell preparations is the short time frame in which the explanted tissue remains viable. Yet, cochlear explants have proven to be an excellent experimental model for understanding the fundamental aspects of auditory biology, substantiated by their use for over 40 years. In this protocol, we present a modernised inner ear explant technique that employs organotypic cell culture inserts and serum free media. This approach decreases the likelihood of explant damage by eliminating the need for adhesive substances. Serum free media also restricts excessive cellular outgrowth and inter-experimental variability, both of which are side effects of exogenous serum addition to cell cultures. The protocol described can be applied to culture both cochlear and vestibular explants from various mammals. Example outcomes are demonstrated by immunohistochemistry, hair cell quantification, and electrophysiological recordings to validate the versatility and viability of the protocol

    Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds

    Get PDF
    In macrolecithal species, cryopreservation of the oocyte and zygote is not possible due to the large size and quantity of lipid deposited within the egg. For birds, this signifies that cryopreserving and regenerating a species from frozen cellular material are currently technically unfeasible. Diploid primordial germ cells (PGCs) are a potential means to freeze down the entire genome and reconstitute an avian species from frozen material. Here, we examine the use of genetically engineered (GE) sterile female layer chicken as surrogate hosts for the transplantation of cryopreserved avian PGCs from rare heritage breeds of chicken. We first amplified PGC numbers in culture before cryopreservation and subsequent transplantation into host GE embryos. We found that all hatched offspring from the chimera GE hens were derived from the donor rare heritage breed broiler PGCs, and using cryopreserved semen, we were able to produce pure offspring. Measurement of the mutation rate of PGCs in culture revealed that 2.7 × 10-10 de novo single-nucleotide variants (SNVs) were generated per cell division, which is comparable with other stem cell lineages. We also found that endogenous avian leukosis virus (ALV) retroviral insertions were not mobilized during in vitro propagation. Taken together, these results show that mutation rates are no higher than normal stem cells, essential if we are to conserve avian breeds. Thus, GE sterile avian surrogate hosts provide a viable platform to conserve and regenerate avian species using cryopreserved PGCs

    A Chromosome-level genome assembly of the highly heterozygous sea urchin Echinometra sp. EZ reveals adaptation in the regulatory regions of stress response genes

    Get PDF
    Echinometra is the most widespread genus of sea urchin and has been the focus of a wide range of studies in ecology, speciation, and reproduction. However, available genetic data for this genus are generally limited to a few select loci. Here, we present a chromosome-level genome assembly based on 10x Genomics, PacBio, and Hi-C sequencing for Echinometra sp. EZ from the Persian/Arabian Gulf. The genome is assembled into 210 scaffolds totaling 817.8 Mb with an N50 of 39.5 Mb. From this assembly, we determined that the E. sp. EZ genome consists of 2n = 42 chromosomes. BUSCO analysis showed that 95.3% of BUSCO genes were complete. Ab initio and transcript-informed gene modeling and annotation identified 29,405 genes, including a conserved Hox cluster. E. sp. EZ can be found in high-temperature and high-salinity environments, and we therefore compared E. sp. EZ gene families and transcription factors associated with environmental stress response (“defensome”) with other echinoid species with similar high-quality genomic resources. While the number of defensome genes was broadly similar for all species, we identified strong signatures of positive selection in E. sp. EZ noncoding elements near genes involved in environmental response pathways as well as losses of transcription factors important for environmental response. These data provide key insights into the biology of E. sp. EZ as well as the diversification of Echinometra more widely and will serve as a useful tool for the community to explore questions in this taxonomic group and beyond

    Sheep Updates 2003 - Posters

    Get PDF
    This session covers eleven papers from different authors:1 Sheep production on annual stubbles/pastures vs lucerne Maxine Brown Gaye Krebs Muresk Institute, Curtin University Diana Fedorenko Kathryn Egerton-Warburton Centre for Cropping Systems, Department of Agriculture Western Australia 2. The value chain of the Lake Grace livestock industry Evan Burt Nazrul Islam Department of Agriculture Western Australia 3. Native pastures, Dorper sheep and the 2002 drought Roy Butler Department of Agriculture Western Australia 4. Commercial sheep breeders can improve their sheep breeding program using wether trials L.G. Butler, S.R. Brown, M.F. D’Antuono, J.C. Greeff Department of Agriculture 5. Western Australia Linked ewe trials to benchmark wool traits and reproductive performance of Western Australian sheep flocks Ken Hart Department of Agriculture Western Australia 6. Damara sheep - what is their potential? A case study from the North-eastern wheatbelt Tanya Kilminster Evan Burt Department of Agriculture Western Australia 7, Australian Sheep Industry CRC - nutrition sub-program Rachel Kirby Sheep CRC Research Fellow 8. Dust penetration is not genetically and phenotypically the same trait as dust content M.E. Ladyman J.C. Greeff Department of Agriculture Western Australia A.C. Schlink CSIRO Livestock Industries, Private Bag 5, Wembley WA I.H. Williams P.E. Vercoe University of Western Australia, Crawley WA 9.Developing sustainable fodder crop systems with new annual pasture legumes Anyou Lui Department of Agriculture Western Australia 10. Seasonal pricing and seasonality of supply of prime lambs in the western wheatbelt Karen Smith Martin Bent Muresk Institute, Curtin University 11. The role of alternative and exotic sheep breeds in the Western Australian sheep industry Matthew Young Department of Agriculture Western Australi

    Antibodies against Merozoite Surface Protein (Msp)-119 Are a Major Component of the Invasion-Inhibitory Response in Individuals Immune to Malaria

    Get PDF
    Antibodies that bind to antigens expressed on the merozoite form of the malaria parasite can inhibit parasite growth by preventing merozoite invasion of red blood cells. Inhibitory antibodies are found in the sera of malaria-immune individuals, however, the specificity of those that are important to this process is not known. In this paper, we have used allelic replacement to construct a Plasmodium falciparum parasite line that expresses the complete COOH-terminal fragment of merozoite surface protein (MSP)-119 from the divergent rodent malaria P. chabaudi. By comparing this transfected line with parental parasites that differ only in MSP-119, we show that antibodies specific for this domain are a major component of the inhibitory response in P. falciparum–immune humans and P. chabaudi–immune mice. In some individual human sera, MSP-119 antibodies dominated the inhibitory activity. The finding that antibodies to a small region of a single protein play a major role in this process has important implications for malaria immunity and is strongly supportive of further understanding and development of MSP-119–based vaccines

    Effect of a pneumococcal whole cell vaccine on influenza A-induced pneumococcal otitis media in infant mice.

    Get PDF
    The pneumococcus remains a common cause of otitis media (OM) despite the widespread introduction of pneumococcal conjugate vaccines. In mice, a pneumococcal whole cell vaccine (WCV) induces serotype-independent protection against pneumococcal colonisation and invasive disease via TH17- and antibody-mediated immunity, respectively. We investigated the effect of WCV on influenza A-induced pneumococcal OM in an infant mouse model. C57BL/6 mice were immunised subcutaneously with a single dose of WCV or adjuvant at 6 days of age, infected with pneumococci (EF3030 [serotype 19F] or PMP1106 [16F]) at 12 days of age, and given influenza A virus (A/Udorn/72/307 [H3N2], IAV) at 18 days of age to induce pneumococcal OM. Pneumococcal density in middle ear and nasopharyngeal tissues was determined 6 and 12 days post-virus. Experiments were repeated in antibody (B6.μMT-/-)- and CD4+ T-cell-deficient mice to investigate the immune responses involved. A single dose of WCV did not prevent the development of pneumococcal OM, nor accelerate pneumococcal clearance compared with mice receiving adjuvant alone. However, WCV reduced the density of EF3030 in the middle ear at 6 days post-viral infection (p = 0.022), and the density of both isolates in the nasopharynx at 12 days post-viral infection (EF3030, p = 0.035; PMP1106, p = 0.011), compared with adjuvant alone. The reduction in density in the middle ear required antibodies and CD4+ T cells: WCV did not reduce EF3030 middle ear density in B6.μMT-/- mice (p = 0.35) nor in wild-type mice given anti-CD4 monoclonal antibody before and after IAV inoculation (p = 0.91); and WCV-immunised CD4+ T cell-deficient GK1.5 mice had higher levels of EF3030 in the middle ear than their adjuvant-immunised counterparts (p = 0.044). A single subcutaneous dose of WCV reduced pneumococcal density in the middle ears of co-infected mice in one of two strains tested, but did not prevent OM from occurring in this animal model

    A New Chicken Genome Assembly Provides Insight into Avian Genome Structure

    Get PDF
    The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts

    Sexual Plasticity and Self-Fertilization in the Sea Anemone Aiptasia diaphana

    Get PDF
    Traits that influence reproductive success and contribute to reproductive isolation in animal and plant populations are a central focus of evolutionary biology. In the present study we used an experimental approach to demonstrate the occurrence of environmental effects on sexual and asexual reproduction, and provide evidence for sexual plasticity and inter-clonal fertilization in laboratory-cultured lines of the sea anemone Aiptasia diaphana. We showed that in A. diaphana, both asexual reproduction by pedal laceration, and sexual reproduction have seasonal components. The rate of pedal laceration was ten-fold higher under summer photoperiod and water temperature conditions than under winter conditions. The onset of gametogenesis coincided with the rising water temperatures occurring in spring, and spawning occurred under parameters that emulated summer photoperiod and temperature conditions. In addition, we showed that under laboratory conditions, asexually produced clones derived from a single founder individual exhibit sexual plasticity, resulting in the development of both male and female individuals. Moreover, a single female founder produced not only males and females but also hermaphrodite individuals. We further demonstrated that A. diaphana can fertilize within and between clone lines, producing swimming planula larvae. These diverse reproductive strategies may explain the species success as invader of artificial marine substrates. We suggest that these diverse reproductive strategies, together with their unique evolutionary position, make Aiptasia diaphana an excellent model for studying the evolution of sex
    corecore