78 research outputs found

    Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ubiquitin protein is present in all eukaryotic cells and promoters from ubiquitin genes are good candidates to regulate the constitutive expression of transgenes in plants. Therefore, two switchgrass (<it>Panicum virgatum </it>L.) ubiquitin genes (<it>PvUbi1 </it>and <it>PvUbi2</it>) were cloned and characterized. Reporter constructs were produced containing the isolated 5' upstream regulatory regions of the coding sequences (i.e. <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters) fused to the <it>uidA </it>coding region (<it>GUS</it>) and tested for transient and stable expression in a variety of plant species and tissues.</p> <p>Results</p> <p><it>PvUbi1 </it>consists of 607 bp containing <it>cis</it>-acting regulatory elements, a 5' untranslated region (UTR) containing a 93 bp non-coding exon and a 1291 bp intron, and a 918 bp open reading frame (ORF) that encodes four tandem, head -to-tail ubiquitin monomer repeats followed by a 191 bp 3' UTR. <it>PvUbi2 </it>consists of 692 bp containing <it>cis</it>-acting regulatory elements, a 5' UTR containing a 97 bp non-coding exon and a 1072 bp intron, a 1146 bp ORF that encodes five tandem ubiquitin monomer repeats and a 183 bp 3' UTR. <it>PvUbi1 </it>and <it>PvUbi2 </it>were expressed in all examined switchgrass tissues as measured by qRT-PCR. Using biolistic bombardment, <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters showed strong expression in switchgrass and rice callus, equaling or surpassing the expression levels of the CaMV <it>35S, 2x35S, ZmUbi1</it>, and <it>OsAct1 </it>promoters. GUS staining following stable transformation in rice demonstrated that the <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters drove expression in all examined tissues. When stably transformed into tobacco (<it>Nicotiana tabacum</it>), the <it>PvUbi2+3 </it>and <it>PvUbi2+9 </it>promoter fusion variants showed expression in vascular and reproductive tissues.</p> <p>Conclusions</p> <p>The <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters drive expression in switchgrass, rice and tobacco and are strong constitutive promoter candidates that will be useful in genetic transformation of monocots and dicots.</p

    EGCG Enhances the Therapeutic Potential of Gemcitabine and CP690550 by Inhibiting STAT3 Signaling Pathway in Human Pancreatic Cancer

    Get PDF
    Background: Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogene, which promotes cell survival, proliferation, motility and progression in cancer cells. Targeting STAT3 signaling may lead to the development of novel therapeutic approaches for human cancers. Here, we examined the effects of epigallocathechin gallate (EGCG) on STAT3 signaling in pancreatic cancer cells, and assessed the therapeutic potential of EGCG with gemcitabine or JAK3 inhibitor CP690550 (Tasocitinib) for the treatment and/or prevention of pancreatic cancer. Methodology/Principal Findings: Cell viability and apoptosis were measured by XTT assay and TUNEL staining, respectively. Gene and protein expressions were measured by qRT-PCR and Western blot analysis, respectively. The results revealed that EGCG inhibited the expression of phospho and total JAK3 and STAT3, STAT3 transcription and activation, and the expression of STAT3-regulated genes, resulting in the inhibition of cell motility, migration and invasion, and the induction of caspase-3 and PARP cleavage. The inhibition of STAT3 enhanced the inhibitory effects of EGCG on cell motility and viability. Additionally, gemcitabine and CP690550 alone inhibited STAT3 target genes and synergized with EGCG to inhibit cell viability and induce apoptosis in pancreatic cancer cells. Conclusions/Significance: Overall, these results suggest that EGCG suppresses the growth, invasion and migration of pancreatic cancer cells, and induces apoptosis by interfering with the STAT3 signaling pathway. Moreover, EGCG furthe

    One thousand plant transcriptomes and the phylogenomics of green plants

    Get PDF
    Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1, 2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life

    Metal-Poor Stars and the Chemical Enrichment of the Universe

    Full text link
    Metal-poor stars hold the key to our understanding of the origin of the elements and the chemical evolution of the Universe. This chapter describes the process of discovery of these rare stars, the manner in which their surface abundances (produced in supernovae and other evolved stars) are determined from the analysis of their spectra, and the interpretation of their abundance patterns to elucidate questions of origin and evolution. More generally, studies of these stars contribute to other fundamental areas that include nuclear astrophysics, conditions at the earliest times, the nature of the first stars, and the formation and evolution of galaxies -- including our own Milky Way. We illustrate this with results from studies of lithium formed during the Big Bang; of stars dated to within ~1 Gyr of that event; of the most metal-poor stars, with abundance signatures very different from all other stars; and of the build-up of the elements over the first several Gyr. The combination of abundance and kinematic signatures constrains how the Milky Way formed, while recent discoveries of extremely metal-poor stars in the Milky Way's dwarf galaxy satellites constrain the hierarchical build-up of its stellar halo from small dark-matter dominated systems. [abridged]Comment: Book chapter, emulated version, 34 pages; number of references are limited by publisher; to appear in Vol. 5 of textbook "Planets, Stars and Stellar Systems", by Springer, in 201

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore