831 research outputs found

    Condensation of achiral simple currents in topological lattice models: a Hamiltonian study of topological symmetry breaking

    Get PDF
    We describe a family of phase transitions connecting phases of differing non-trivial topological order by explicitly constructing Hamiltonians of the Levin-Wen[PRB 71, 045110] type which can be tuned between two solvable points, each of which realizes a different topologically ordered phase. We show that the low-energy degrees of freedom near the phase transition can be mapped onto those of a Potts model, and we discuss the stability of the resulting phase diagram to small perturbations about the model. We further explain how the excitations in the condensed phase are formed from those in the original topological theory, some of which are split into multiple components by condensation, and we discuss the implications of our results for understanding the nature of general achiral topological phases in 2+1 dimensions in terms of doubled Chern-Simons theories

    Monopole Flux State on the Pyrochlore Lattice

    Full text link
    The ground state of a spin 1/2 nearest neighbor quantum Heisenberg antiferromagnet on the pyrochlore lattice is investigated using a large NN SU(N) fermionic mean field theory. We find several mean field states, of which the state of lowest energy upon Gutzwiller projection, is a parity and time reversal breaking chiral phase with a unit monopole flux exiting each tetrahedron. This "monopole flux" state has a Fermi surface consisting of 4 lines intersecting at a point. At mean field the low-energy excitations about the Fermi surface are gapless spinons. An analysis using the projective symmetry group of this state suggests that the state is stable to small fluctuations which neither induce a gap, nor alter the unusual Fermi surface

    Deuteron and proton NMR study of D₂, p-dichlorobenzene and 1,3,5-trichlorobenzene in bimesogenic liquid crystals with two nematic phases

    Get PDF
    The solutes dideuterium, 1,3,5-trichlorobenzene and p-dichlorobenzene (pdcb) are co-dissolved in a 61/39 wt% mixture of CBC9CB/5CB, a bimesogenic liquid crystal with two nematic phases. NMR spectra are collected for each solute. The local electric field gradient (FZZ) is obtained from the dideuterium spectrum. A double Maier-Saupe potential (MSMS) is used to rationalize the order parameters of pdcb. The liquid-crystal fields G₁ and G₂ are taken to be due to size and shape interactions and interactions between the solute molecular quadrupole and the mean FZZ of the medium. The FZZ’s obtained from D₂ and G₂ (from pdcb) are compared and discussed

    Excess sub-millimetre emission from GRS 1915+105

    Get PDF
    We present the first detections of the black hole X-ray binary GRS 1915+105 at sub-millimetre wavelengths. We clearly detect the source at 350 GHz on two epochs, with significant variability over the 24 hr between epochs. Quasi-simultaneous radio monitoring indicates an approximately flat spectrum from 2 - 350 GHz, although there is marginal evidence for a minimum in the spectrum between 15 - 350 GHz. The flat spectrum and correlated variability imply that the sub-mm emission arises from the same synchrotron source as the radio emission. This source is likely to be a quasi-steady partially self-absorbed jet, in which case these sub-mm observations probe significantly closer to the base of the jet than do radio observations and may be used in future as a valuable diagnostic of the disc:jet connection in this source.Comment: 5 pages, 3 figures, accepted for publication in MNRA

    NMR study of a bimesogenic liquid crystal with two nematic phases

    Get PDF
    Recent interest in bimesogenic liquid crystals showing two nematic phases has led us to investigate the nematic mean-field interactions in these nematic phases by using rigid solutes as probes. The nematic potential that is modelled by two independent Maier-Saupe terms is successful in fitting the observed dipolar couplings (order parameters) of para-, meta- and ortho-dichlorobenzene solutes in both the nematic phases of 39 wt% of 4-n-pentyl-4â€Č-cyanobiphenyl (5CB) in α,ω-bis(4-4â€Č-cyanobiphenyl)nonane (CB_C9_CB) to better than the 5% level. The derived liquid-crystal potential parameters G₁ and G₂ for each solute in the N and Ntb phases will be discussed. The most interesting observation is that G1 (associated with size and shape interactions) is almost constant in the Ntb phase, whereas G₂ (associated with longer-range electrostatic interactions) has large variation, even changing sign

    Spin-transfer switching and low-field precession in exchange-biased spin valve nano-pillars

    Full text link
    Using a three-dimensional focused-ion beam lithography process we have fabricated nanopillar devices which show spin transfer torque switching at zero external magnetic fields. Under a small in-plane external bias field, a field-dependent peak in the differential resistance versus current is observed similar to that reported in asymmetrical nanopillar devices. This is interpreted as evidence for the low-field excitation of spin waves which in our case is attributed to a spin-scattering asymmetry enhanced by the IrMn exchange bias layer coupled to a relatively thin CoFe fixed layer.Comment: 11 pages, 4 figures. To appear in APL, April 200

    Critical Current Oscillations in Strong Ferromagnetic Pi-Junctions

    Full text link
    We report magnetic and electrical measurements of Nb Josephson junctions with strongly ferromagnetic barriers of Co, Ni and Ni80Fe20 (Py). All these materials show multiple oscillations of critical current with barrier thickness implying repeated 0-pi phase-transitions in the superconducting order parameter. We show in particular that the Co barrier devices can be accurately modelled using existing clean limit theories and so that, despite the high exchange energy (309 meV), the large IcRN value in the pi-state means Co barriers are ideally suited to the practical development of superconducting pi-shift devices.Comment: 4 pages 3 figures 1 table. Revised version as accepted for publication. To appear in Physical Review Letter

    Cygnus X-3 in outburst : quenched radio emission, radiation losses and variable local opacity

    Full text link
    We present multiwavelength observations of Cygnus X-3 during an extended outburst in 1994 February - March. Intensive radio monitoring at 13.3, 3.6 & 2.0 cm is complemented by observations at (sub)millimetre and infrared wavelengths, which find Cyg X-3 to be unusually bright and variable, and include the first reported detection of the source at 0.45 mm. We report the first confirmation of quenched radio emission prior to radio flaring independent of observations at Green Bank. The observations reveal evidence for wavelength-dependent radiation losses and gradually decreasing opacity in the environment of the radio jet. We find that the radiation losses are likely to be predominantly inverse Compton losses experienced by the radio-emitting electrons in the strong radiation field of a luminous companion to the compact object. We interpret the decreasing opacity during the flare sequence as resulting from a decreasing proportion of thermal electrons entrained in the jet, reflecting a decreasing density in the region of jet formation. We present, drawing in part on the work of other authors, a model based upon mass-transfer rate instability predicting gamma-ray, X-ray, infrared and radio trends during a radio flaring sequence.Comment: LaTeX, 11 pages, 6 figures. Submitted to MNRA

    The Normal State Resistivity of Grain Boundaries in YBa2Cu3O7-delta

    Full text link
    Using an optimized bridge geometry we have been able to make accurate measurements of the properties of YBa2Cu3O7-delta grain boundaries above Tc. The results show a strong dependence of the change of resistance with temperature on grain boundary angle. Analysis of our results in the context of band-bending allows us to estimate the height of the potential barrier present at the grain boundary interface.Comment: 11 pages, 3 figure
    • 

    corecore