7 research outputs found

    The holobiont principle

    Get PDF
    Sve biljne i životinjske vrste obiluju raznovrsnim mikroorganizmima s kojima stvaraju razne asocijacije čineći jednu cjelinu - holobionta. Holobiont posjeduje svoj hologenom i on se sastoji od zbroja domaćinskog i svih pripadajućih mikrobnih genoma. Cjelokupan hologenom može se mijenjati, kao posljedica promjene domaćinskog ili mikrobnih genoma. On se može prenositi s jedne generacije na drugu i na taj način proslijediti jedinstvena svojstva na budućeg holobionta. Mikroorganizmi i domaćin mogu međusobno komunicirati te zajedno oblikovati fiziološke i adaptivne vrijednosti unutar (mikro– )okoliša u kojem se nalaze. U ovom radu ukratko su predstavljeni koraljni, hidrin, makroalgalni i termitni holobiont koji su među ostalima često istraživani sustavi.All animal and plant species carry plenty of diverse microorganisms. They create interactions and form a whole unit called holobiont. Holobiont has its own hologenome which consists of both host's and microoganisms' genomes. Genetic variation in the hologenome is possible by either the change in host's or microbes' genomes. The hologenome can be transmitted from one generation to the next and thus contribute to the unique traits of the holobiont. Microbes and host have the ability to cross-talk and influence on the overall health and fitness of the holobiont within its environment. In this paper, some of today present studied systems, coral, hydra, seaweed and termite holobiont are presented

    Correlated response to selection for litter size environmental variability in rabbits' resilience

    Full text link
    [EN] Resilience is the ability of an animal to return soon to its initial productivity after facing diverse environmental challenges. This trait is directly related to animal welfare and it plays a key role in fluctuations of livestock productivity. A divergent selection experiment for environmental variance of litter size has been performed successfully in rabbits over ten generations. The objective of this study was to analyse resilience indicators of stress and disease in the divergent lines of this experiment. The high line showed a lower survival rate at birth than the low line (-4.1%). After correcting by litter size, the difference was -3.2%. Involuntary culling rate was higher in the high than in the low line (+12.4%). Before vaccination against viral haemorrhagic disease or myxomatosis, concentration of lymphocytes, C-reactive protein (CRP), complement C3, serum bilirubin, triglycerides and cholesterol were higher in the high line than in the low line (difference between lines +4.5%, +5.6 mu g/ml, +4.6 mg/ml, +7.9 mmol/l, +0.3 mmol/l and +0.4 mmol/l). Immunological and biochemical responses to the two vaccines were similar. After vaccination, the percentage of lymphocytes and CRP concentration were higher in the low line than in the high one (difference between lines +4.0% and +13.1 mu g/ml). The low line also showed a higher increment in bilirubin and triglycerides than the high line (+14.2 v. +8.7 mmol/l for bilirubin and +0.11 v. +0.01 mmol/l for triglycerides); these results would agree with the protective role of bilirubin and triglycerides against the larger inflammatory response found in this line. In relation to stress, the high line had higher basal concentration of cortisol than the low line (+0.2ng/ml); the difference between lines increased more than threefold after the injection of ACTH 1 to 24, the increase being greater in the high line (+0.9 ng/ml) than in the low line (+0.4 ng/ml). Selection for divergent environmental variability of litter size leads to dams with different culling rate for reproductive causes and different kits' neonatal survival. These associations suggest that the observed fitness differences are related to differences in the inflammatory response and the corticotrope response to stress, which are two important components of physiological adaptation to environmental aggressions.This study is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) with the Projects AGL2014-55921, C2-1-P and C2-2-P, and AGL2017-86083, C2-1-P and C2-2-P.Argente, M.; Garcia, M.; Zbynovska, K.; Petruska, P.; Capcarova, M.; Blasco Mateu, A. (2019). Correlated response to selection for litter size environmental variability in rabbits' resilience. Animal. 13(10):2348-2355. https://doi.org/10.1017/S1751731119000302S234823551310Glaser, R., & Kiecolt-Glaser, J. K. (2005). Stress-induced immune dysfunction: implications for health. Nature Reviews Immunology, 5(3), 243-251. doi:10.1038/nri1571Markanday, A. (2015). Acute Phase Reactants in Infections: Evidence-Based Review and a Guide for Clinicians. Open Forum Infectious Diseases, 2(3). doi:10.1093/ofid/ofv098Rauw, W. ., Kanis, E., Noordhuizen-Stassen, E. ., & Grommers, F. . (1998). Undesirable side effects of selection for high production efficiency in farm animals: a review. Livestock Production Science, 56(1), 15-33. doi:10.1016/s0301-6226(98)00147-xPiles, M., García, M. L., Rafel, O., Ramon, J., & Baselga, M. (2006). Genetics of litter size in three maternal lines of rabbits: Repeatability versus multiple-trait models. Journal of Animal Science, 84(9), 2309-2315. doi:10.2527/jas.2005-622Guelfi, G., Zerani, M., Brecchia, G., Parillo, F., Dall’Aglio, C., Maranesi, M., & Boiti, C. (2011). Direct actions of ACTH on ovarian function of pseudopregnant rabbits. Molecular and Cellular Endocrinology, 339(1-2), 63-71. doi:10.1016/j.mce.2011.03.017García ML , Blasco A , García ME and Argente MJ 2018. Body condition and energy mobilisation in rabbits selected for litter size variability. Animal, 1–6, https://doi.org/10.1017/S1751731118002203, Published online by Cambridge University Press 28 August 2018.Furze, R. C., & Rankin, S. M. (2008). Neutrophil mobilization and clearance in the bone marrow. Immunology, 125(3), 281-288. doi:10.1111/j.1365-2567.2008.02950.xMcDade, T. W., Borja, J. B., Kuzawa, C. W., Perez, T. L. L., & Adair, L. S. (2015). C-reactive protein response to influenza vaccination as a model of mild inflammatory stimulation in the Philippines. Vaccine, 33(17), 2004-2008. doi:10.1016/j.vaccine.2015.03.019Blasco, A. (2017). Bayesian Data Analysis for Animal Scientists. doi:10.1007/978-3-319-54274-4Castellini, C., Dal Bosco, A., Arias-Álvarez, M., Lorenzo, P. L., Cardinali, R., & Rebollar, P. G. (2010). The main factors affecting the reproductive performance of rabbit does: A review. Animal Reproduction Science, 122(3-4), 174-182. doi:10.1016/j.anireprosci.2010.10.003Rosa Neto, N. S., & Carvalho, J. F. de. (2009). O uso de provas de atividade inflamatória em reumatologia. Revista Brasileira de Reumatologia, 49(4), 413-430. doi:10.1590/s0482-50042009000400008Argente, M. J., Calle, E. W., García, M. L., & Blasco, A. (2017). Correlated response in litter size components in rabbits selected for litter size variability. Journal of Animal Breeding and Genetics, 134(6), 505-511. doi:10.1111/jbg.12283Mirkena, T., Duguma, G., Haile, A., Tibbo, M., Okeyo, A. M., Wurzinger, M., & Sölkner, J. (2010). Genetics of adaptation in domestic farm animals: A review. Livestock Science, 132(1-3), 1-12. doi:10.1016/j.livsci.2010.05.003García, M. L., Blasco, A., & Argente, M. J. (2016). Embryologic changes in rabbit lines selected for litter size variability. Theriogenology, 86(5), 1247-1250. doi:10.1016/j.theriogenology.2016.04.065Feingold KR and Grunfeld C 2015. The effect of inflammation and infection on lipids and lipoproteins. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F and Vinik A. Endotext, South Dartmouth, MA, USA. Retrieved on 7 June 2018 from https://www.ncbi.nlm.nih.gov/books/NBK326741/.Minemura, M. (2014). Liver involvement in systemic infection. World Journal of Hepatology, 6(9), 632. doi:10.4254/wjh.v6.i9.632Knap, P. W. (2005). Breeding robust pigs. Australian Journal of Experimental Agriculture, 45(8), 763. doi:10.1071/ea05041Barcia, A. M., & Harris, H. W. (2005). Triglyceride-Rich Lipoproteins as Agents of Innate Immunity. Clinical Infectious Diseases, 41(Supplement_7), S498-S503. doi:10.1086/432005Webster, J. I., Tonelli, L., & Sternberg, E. M. (2002). NEUROENDOCRINEREGULATION OFIMMUNITY. Annual Review of Immunology, 20(1), 125-163. doi:10.1146/annurev.immunol.20.082401.104914Fortun-Lamothe, L. (2006). Energy balance and reproductive performance in rabbit does. Animal Reproduction Science, 93(1-2), 1-15. doi:10.1016/j.anireprosci.2005.06.009Cabezas, S., Blas, J., Marchant, T. A., & Moreno, S. (2007). Physiological stress levels predict survival probabilities in wild rabbits. Hormones and Behavior, 51(3), 313-320. doi:10.1016/j.yhbeh.2006.11.004De Nardo, D., Labzin, L. I., Kono, H., Seki, R., Schmidt, S. V., Beyer, M., … Latz, E. (2013). High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nature Immunology, 15(2), 152-160. doi:10.1038/ni.2784BURKUŠ, J., KAČMAROVÁ, M., KUBANDOVÁ, J., KOKOŠOVÁ, N., FABIANOVÁ, K., FABIAN, D., … ČIKOŠ, Š. (2015). Stress exposure during the preimplantation period affects blastocyst lineages and offspring development. Journal of Reproduction and Development, 61(4), 325-331. doi:10.1262/jrd.2015-012Posthouwer, D., Voorbij, H. A. M., Grobbee, D. E., Numans, M. E., & van der Bom, J. G. (2004). Influenza and pneumococcal vaccination as a model to assess C-reactive protein response to mild inflammation. Vaccine, 23(3), 362-365. doi:10.1016/j.vaccine.2004.05.035Ibáñez-Escriche, N., Sorensen, D., Waagepetersen, R., & Blasco, A. (2008). Selection for Environmental Variation: A Statistical Analysis and Power Calculations to Detect Response. Genetics, 180(4), 2209-2226. doi:10.1534/genetics.108.091678Colditz, I. G., & Hine, B. C. (2016). Resilience in farm animals: biology, management, breeding and implications for animal welfare. Animal Production Science, 56(12), 1961. doi:10.1071/an15297Blasco, A., Martínez-Álvaro, M., García, M.-L., Ibáñez-Escriche, N., & Argente, M.-J. (2017). Selection for environmental variance of litter size in rabbits. Genetics Selection Evolution, 49(1). doi:10.1186/s12711-017-0323-4Argente MJ , Santacreu MA , Climen A and Blasco A 2000. Genetic correlations between litter size and uterine capacity. In Proceeding of the 8th World Rabbit Congress, 4–7 July 2000, Valencia, Spain, pp. 333–338.Janssens, C. J., Helmond, F. A., & Wiegant, V. M. (1995). Chronic stress and pituitary–adrenocortical responses to corticotropin-releasing hormone and vasopressin in female pigs. European Journal of Endocrinology, 132(4), 479-486. doi:10.1530/eje.0.132047

    The effect of endoplasmic reticulum stress on the gene expression of Tff3, TNFalfa, MCP1 and CXCL1 in mice liver

    No full text
    Stres endoplazmatskog retikula (ER) nastaje nakupljanjem krivo namotanih ili nenamotanih proteina u lumenu endoplazmatskog retikula, a ponajviše u sekretornim stanicama, koje su, zbog svojih funkcija, bogate ER-om. U odgovor na stres, eukariotska stanica razvila je adaptivne mehanizme poznate kao odgovor na nenamotane proteine (UPR) čije nastojanje je vratiti staničnu homeostazu. Homeostaza se vraća zaustavljanjem translacije proteina, aktivacijom molekularnih šaperona ili degradacijom krivo namotanih proteina, a produljeni stres dovodi do patoloških promjena i stanične smrti. Hepatociti su, kao stanice s velikim kapacitetom sinteze proteina, podložni aktivaciji UPR puteva koji igraju važnu ulogu u prevenciji i patogenezi bolesti jetre. Sve više istraživanja usmjerava se prema povezanosti ER stresa, upale, stanične ozljede i steatoze u nealkoholnoj bolesti masne jetre (NAFLD) gdje glavnu ulogu imaju upalni citokini i kemokini. U ovom istraživanju razvijena je qPCR metoda (optimalni reakcijski uvjeti i početnice) za mišje tkivo jetre soja C57Bl6Crl. ER stres je izazvan jednokratnom primjenom tunikamicina, te je ispitana relativna promjena ekspresije upalnih citokina, TNFα, MCP1 i CXCL1 te proteina TFF3 čija je uloga u jetri još uvijek nedovoljno istražena. Rezultati su analizirani programom REST 2009 nakon čega je ustanovljena statistički značajna, povišena ekspresija kod Tnfα, Mcp1 i Cxcl1 gena te statistički neznačajna, smanjena ekspresija Tff3 gena.Endoplasmic reticulum stress (ER) is characterized by the accumulation of misfolded and unfolded proteins in the ER lumen, mostly in secretory cells, which, due to their functions, are rich in the ER. In response to stress, the eukaryotic cell has evolved adaptive mechanisms known as the unfolded protein response (UPR) whose main goal is to restore cellular homeostasis. Homeostasis is restored by stopping protein translation, activation of molecular chaperones, or degradation of misfolded proteins, and can lead to cell death. Unresolved chronic ER stress leads to pathological changes. Hepatocytes have large capacity for protein synthesis and they are highly exposed to possiiblities of ER stress. Activation of UPR pathways has an important role in the prevention of liver pathogenesis. Growing body of evidence connects ER stress with inflammation, cell injury, and steatosis in nonalcoholic fatty liver disease (NAFLD) where inflammatory cytokines and chemokines play a major role. The qPCR method (optimal reaction conditions and primers) was developed for C57Bl6Crl mouse strain liver tissue. ER stress was induced with single tunicamycin injection and expression of inflammatory cytokines, TNFα, MCP1, CXCL1, and the TFF3 protein, whose role in the liver is still insufficiently investigated, was examined. The results were analyzed by the REST 2009 software. ER stress induced statistically significant increased expression of Tnfα, Mcp1, and Cxcl1 genes while expression of the Tff3 gene was not significantly changed

    The effect of endoplasmic reticulum stress on the gene expression of Tff3, TNFalfa, MCP1 and CXCL1 in mice liver

    No full text
    Stres endoplazmatskog retikula (ER) nastaje nakupljanjem krivo namotanih ili nenamotanih proteina u lumenu endoplazmatskog retikula, a ponajviše u sekretornim stanicama, koje su, zbog svojih funkcija, bogate ER-om. U odgovor na stres, eukariotska stanica razvila je adaptivne mehanizme poznate kao odgovor na nenamotane proteine (UPR) čije nastojanje je vratiti staničnu homeostazu. Homeostaza se vraća zaustavljanjem translacije proteina, aktivacijom molekularnih šaperona ili degradacijom krivo namotanih proteina, a produljeni stres dovodi do patoloških promjena i stanične smrti. Hepatociti su, kao stanice s velikim kapacitetom sinteze proteina, podložni aktivaciji UPR puteva koji igraju važnu ulogu u prevenciji i patogenezi bolesti jetre. Sve više istraživanja usmjerava se prema povezanosti ER stresa, upale, stanične ozljede i steatoze u nealkoholnoj bolesti masne jetre (NAFLD) gdje glavnu ulogu imaju upalni citokini i kemokini. U ovom istraživanju razvijena je qPCR metoda (optimalni reakcijski uvjeti i početnice) za mišje tkivo jetre soja C57Bl6Crl. ER stres je izazvan jednokratnom primjenom tunikamicina, te je ispitana relativna promjena ekspresije upalnih citokina, TNFα, MCP1 i CXCL1 te proteina TFF3 čija je uloga u jetri još uvijek nedovoljno istražena. Rezultati su analizirani programom REST 2009 nakon čega je ustanovljena statistički značajna, povišena ekspresija kod Tnfα, Mcp1 i Cxcl1 gena te statistički neznačajna, smanjena ekspresija Tff3 gena.Endoplasmic reticulum stress (ER) is characterized by the accumulation of misfolded and unfolded proteins in the ER lumen, mostly in secretory cells, which, due to their functions, are rich in the ER. In response to stress, the eukaryotic cell has evolved adaptive mechanisms known as the unfolded protein response (UPR) whose main goal is to restore cellular homeostasis. Homeostasis is restored by stopping protein translation, activation of molecular chaperones, or degradation of misfolded proteins, and can lead to cell death. Unresolved chronic ER stress leads to pathological changes. Hepatocytes have large capacity for protein synthesis and they are highly exposed to possiiblities of ER stress. Activation of UPR pathways has an important role in the prevention of liver pathogenesis. Growing body of evidence connects ER stress with inflammation, cell injury, and steatosis in nonalcoholic fatty liver disease (NAFLD) where inflammatory cytokines and chemokines play a major role. The qPCR method (optimal reaction conditions and primers) was developed for C57Bl6Crl mouse strain liver tissue. ER stress was induced with single tunicamycin injection and expression of inflammatory cytokines, TNFα, MCP1, CXCL1, and the TFF3 protein, whose role in the liver is still insufficiently investigated, was examined. The results were analyzed by the REST 2009 software. ER stress induced statistically significant increased expression of Tnfα, Mcp1, and Cxcl1 genes while expression of the Tff3 gene was not significantly changed

    The effect of endoplasmic reticulum stress on the gene expression of Tff3, TNFalfa, MCP1 and CXCL1 in mice liver

    No full text
    Stres endoplazmatskog retikula (ER) nastaje nakupljanjem krivo namotanih ili nenamotanih proteina u lumenu endoplazmatskog retikula, a ponajviše u sekretornim stanicama, koje su, zbog svojih funkcija, bogate ER-om. U odgovor na stres, eukariotska stanica razvila je adaptivne mehanizme poznate kao odgovor na nenamotane proteine (UPR) čije nastojanje je vratiti staničnu homeostazu. Homeostaza se vraća zaustavljanjem translacije proteina, aktivacijom molekularnih šaperona ili degradacijom krivo namotanih proteina, a produljeni stres dovodi do patoloških promjena i stanične smrti. Hepatociti su, kao stanice s velikim kapacitetom sinteze proteina, podložni aktivaciji UPR puteva koji igraju važnu ulogu u prevenciji i patogenezi bolesti jetre. Sve više istraživanja usmjerava se prema povezanosti ER stresa, upale, stanične ozljede i steatoze u nealkoholnoj bolesti masne jetre (NAFLD) gdje glavnu ulogu imaju upalni citokini i kemokini. U ovom istraživanju razvijena je qPCR metoda (optimalni reakcijski uvjeti i početnice) za mišje tkivo jetre soja C57Bl6Crl. ER stres je izazvan jednokratnom primjenom tunikamicina, te je ispitana relativna promjena ekspresije upalnih citokina, TNFα, MCP1 i CXCL1 te proteina TFF3 čija je uloga u jetri još uvijek nedovoljno istražena. Rezultati su analizirani programom REST 2009 nakon čega je ustanovljena statistički značajna, povišena ekspresija kod Tnfα, Mcp1 i Cxcl1 gena te statistički neznačajna, smanjena ekspresija Tff3 gena.Endoplasmic reticulum stress (ER) is characterized by the accumulation of misfolded and unfolded proteins in the ER lumen, mostly in secretory cells, which, due to their functions, are rich in the ER. In response to stress, the eukaryotic cell has evolved adaptive mechanisms known as the unfolded protein response (UPR) whose main goal is to restore cellular homeostasis. Homeostasis is restored by stopping protein translation, activation of molecular chaperones, or degradation of misfolded proteins, and can lead to cell death. Unresolved chronic ER stress leads to pathological changes. Hepatocytes have large capacity for protein synthesis and they are highly exposed to possiiblities of ER stress. Activation of UPR pathways has an important role in the prevention of liver pathogenesis. Growing body of evidence connects ER stress with inflammation, cell injury, and steatosis in nonalcoholic fatty liver disease (NAFLD) where inflammatory cytokines and chemokines play a major role. The qPCR method (optimal reaction conditions and primers) was developed for C57Bl6Crl mouse strain liver tissue. ER stress was induced with single tunicamycin injection and expression of inflammatory cytokines, TNFα, MCP1, CXCL1, and the TFF3 protein, whose role in the liver is still insufficiently investigated, was examined. The results were analyzed by the REST 2009 software. ER stress induced statistically significant increased expression of Tnfα, Mcp1, and Cxcl1 genes while expression of the Tff3 gene was not significantly changed
    corecore