149 research outputs found
Patch-clamping mit Mikroöffnungen in Polyimide-Folien
Die Patchclamp-Technik ist die aussagekräftigste Methode zur Untersuchung der Funktion und Regulation von Ionenkanälen. Sie basiert auf der Bildung eines engen Kontaktes zwischen der Spitze einer Glasspipette und der Membran einer Zelle, an die die Pipette herangeführt wird. Aus dem engen Kontakt resultiert ein elektrischer Widerstand im Gigaohm-Bereich zwischen der Elektrolytlösung im Innern der Pipette und der die Zelle und Pipette umgebenden Elektrolytlösung. Trotz der weitverbreiteten Verwendung dieser Methode ist die wahre Natur dieses Kontaktes und der resultierenden hochohmigen „Seal“-Bildung noch immer nicht im Detail verstanden. Zudem ist die Patchclamp-Methode zeitaufwendig und erfordert erfahrene Anwender sowie gutausgerüstete Setups. Im Moment ist noch keine Vorrichtung beschrieben, die diesen “Cell-by-cell”-Assay vollautomatisch durchführt. Dies ist jedoch die Voraussetzung für Automatisierung, Miniaturisierung und Parallelisierung, um mit dieser Methode Hochdurchsatz-Untersuchungen von pharmazeutischen Substanzen durchführen zu können.
Mehrere Gruppen berichten über einen Ansatz, der die Glasspipette durch eine mikromechanisch gefertigte Siliziumstruktur ersetzen soll. Sie verwenden ein dünnes Diaphragma, in das ein mikroskopisch kleines Loch (Durchmesser im Nano- und Mikrometer-Bereich) eingebracht ist. Darauf werden Lipidvesikel aufgebracht, die per Adhäsion die Umgebung der Mikroöffnung hochohmig abdichten. Mit dieser Methode lassen sich Einzelkanalströme messen
Исследования по разработке методики определения примеси таллия в кадмии особой чистоты методом АПН
Проводились исследования по разработке методики определения Tl в Cd особой чистоты. Изучалось влияние избытка Pb и Cd на определение Tl. Предложена методика определения Tl в кадмии особой чистоты. Чувствительность методики 0,000001%
Strain-dependent effects of clinical echovirus 30 outbreak isolates at the blood-CSF barrier
Background: Echovirus (E) 30 (E-30) meningitis is characterized by neuroinflammation involving immune cell pleocytosis at the protective barriers of the central nervous system (CNS). In this context, infection of the blood-cerebrospinal fluid barrier (BCSFB), which has been demonstrated to be involved in enteroviral CNS pathogenesis, may affect the tight junction (TJ) and adherens junction (AJ) function and morphology.
Methods: We used an in vitro human choroid plexus epithelial (HIBCPP) cell model to investigate the effect of three clinical outbreak strains (13-311, 13-759, and 14-397) isolated in Germany in 2013, and compared them to E-30 Bastianni. Conducting transepithelial electrical resistance (TEER), paracellular dextran flux measurement, quantitative real-time polymerase chain reaction (qPCR), western blot, and immunofluorescence analysis, we investigated TJ and AJ function and morphology as well as strain-specific E-30 infection patterns. Additionally, transmission electron and focused ion beam microscopy electron microscopy (FIB-SEM) was used to evaluate the mode of leukocyte transmigration. Genome sequencing and phylogenetic analyses were performed to discriminate potential genetic differences among the outbreak strains.
Results: We observed a significant strain-dependent decrease in TEER with strains E-30 Bastianni and 13-311, whereas paracellular dextran flux was only affected by E-30 Bastianni. Despite strong similarities among the outbreak strains in replication characteristics and particle distribution, strain 13-311 was the only outbreak isolate revealing comparable disruptive effects on TJ (Zonula Occludens (ZO) 1 and occludin) and AJ (E-cadherin) morphology to E-30 Bastianni. Notwithstanding significant junctional alterations upon E-30 infection, we observed both para- and transcellular leukocyte migration across HIBCPP cells. Complete genome sequencing revealed differences between the strains analyzed, but no explicit correlation with the observed strain-dependent effects on HIBCPP cells was possible.
Conclusion: The findings revealed distinct E-30 strain-specific effects on barrier integrity and junctional morphology. Despite E-30-induced barrier alterations leukocyte trafficking did not exclusively occur via the paracellular route
Quantitative Histomorphometry of the Healthy Peritoneum
The peritoneum plays an essential role in preventing abdominal frictions and
adhesions and can be utilized as a dialysis membrane. Its physiological
ultrastructure, however, has not yet been studied systematically. 106
standardized peritoneal and 69 omental specimens were obtained from 107
patients (0.1–60 years) undergoing surgery for disease not affecting the
peritoneum for automated quantitative histomorphometry and
immunohistochemistry. The mesothelial cell layer morphology and protein
expression pattern is similar across all age groups. Infants below one year
have a thinner submesothelium; inflammation, profibrotic activity and
mesothelial cell translocation is largely absent in all age groups. Peritoneal
blood capillaries, lymphatics and nerve fibers locate in three distinct
submesothelial layers. Blood vessel density and endothelial surface area
follow a U-shaped curve with highest values in infants below one year and
lowest values in children aged 7–12 years. Lymphatic vessel density is much
lower, and again highest in infants. Omental blood capillary density
correlates with parietal peritoneal findings, whereas only few lymphatic
vessels are present. The healthy peritoneum exhibits major thus far unknown
particularities, pertaining to functionally relevant structures, and subject
to substantial changes with age. The reference ranges established here provide
a framework for future histomorphometric analyses and peritoneal transport
modeling approaches
Cooperative Development of L75 LOX Ethanol engine: Current Status with Focus on Capacitive Chamber Testing
In 2011 DLR and AEB agreed to cooperate in the field of liquid propulsion. The L75 engine project, which started in 2008 in Brazil, is the focus of this effort. The most important event in the project up to this date is the test campaign of the capacitive thrust chamber, a full-scale model of the L75 injection head and combustion chamber, which is the main focus of this paper, along with the status of other advances made in the project during the last year
Design of a dual species atom interferometer for space
Atom interferometers have a multitude of proposed applications in space
including precise measurements of the Earth's gravitational field, in
navigation & ranging, and in fundamental physics such as tests of the weak
equivalence principle (WEP) and gravitational wave detection. While atom
interferometers are realized routinely in ground-based laboratories, current
efforts aim at the development of a space compatible design optimized with
respect to dimensions, weight, power consumption, mechanical robustness and
radiation hardness. In this paper, we present a design of a high-sensitivity
differential dual species Rb/Rb atom interferometer for space,
including physics package, laser system, electronics and software. The physics
package comprises the atom source consisting of dispensers and a 2D
magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap
based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein
condensate (BEC) creation and interferometry, the detection unit, the vacuum
system for mbar ultra-high vacuum generation, and the
high-suppression factor magnetic shielding as well as the thermal control
system. The laser system is based on a hybrid approach using fiber-based
telecom components and high-power laser diode technology and includes all laser
sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and
switching of the laser beams is carried out on an optical bench using Zerodur
bonding technology. The instrument consists of 9 units with an overall mass of
221 kg, an average power consumption of 608 W (819 W peak), and a volume of 470
liters which would well fit on a satellite to be launched with a Soyuz rocket,
as system studies have shown.Comment: 30 pages, 23 figures, accepted for publication in Experimental
Astronom
Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer
Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA
Reduced microvascular density in omental biopsies of children with chronic kidney disease
Endothelial dysfunction is an early manifestation of cardiovascular disease (CVD) and consistently observed in patients with chronic kidney disease (CKD). We hypothesized that CKD is associated with systemic damage to the microcirculation, preceding macrovascular pathology. To assess the degree of "uremic microangiopathy", we have measured microvascular density in biopsies of the omentum of children with CKD.Omental tissue was collected from 32 healthy children (0-18 years) undergoing elective abdominal surgery and from 23 age-matched cases with stage 5 CKD at the time of catheter insertion for initiation of peritoneal dialysis. Biopsies were analyzed by independent observers using either a manual or an automated imaging system for the assessment of microvascular density. Quantitative immunohistochemistry was performed for markers of autophagy and apoptosis, and for the abundance of the angiogenesis-regulating proteins VEGF-A, VEGF-R2, Angpt1 and Angpt2.Microvascular density was significantly reduced in uremic children compared to healthy controls, both by manual imaging with a digital microscope (median surface area 0.61% vs. 0.95%, p<0.0021 and by automated quantification (total microvascular surface area 0.89% vs. 1.17% p = 0.01). Density measured by manual imaging was significantly associated with age, height, weight and body surface area in CKD patients and healthy controls. In multivariate analysis, age and serum creatinine level were the only independent, significant predictors of microvascular density (r2 = 0.73). There was no immunohistochemical evidence for apoptosis or autophagy. Quantitative staining showed similar expression levels of the angiogenesis regulators VEGF-A, VEGF-receptor 2 and Angpt1 (p = 0.11), but Angpt2 was significantly lower in CKD children (p = 0.01).Microvascular density is profoundly reduced in omental biopsies of children with stage 5 CKD and associated with diminished Angpt2 signaling. Microvascular rarefaction could be an early systemic manifestation of CKD-induced cardiovascular disease
- …