121 research outputs found

    Correlations in Hot Dense Helium

    Full text link
    Hot dense helium is studied with first-principles computer simulations. By combining path integral Monte Carlo and density functional molecular dynamics, a large temperature and density interval ranging from 1000 to 1000000 K and 0.4 to 5.4 g/cc becomes accessible to first-principles simulations and the changes in the structure of dense hot fluids can be investigated. The focus of this article are pair correlation functions between nuclei, between electrons, and between electrons and nuclei. The density and temperature dependence of these correlation functions is analyzed in order to describe the structure of the dense fluid helium at extreme conditions.Comment: accepted for publication in Journal of Physics

    Prediction of Novel High Pressure H2O-NaCl and Carbon Oxide Compounds with Symmetry-Driven Structure Search Algorithm

    Full text link
    Crystal structure prediction with theoretical methods is particularly challenging when unit cells with many atoms need to be considered. Here we employ a symmetry-driven structure search (SYDSS) method and combine it with density functional theory (DFT) to predict novel crystal structures at high pressure. We sample randomly from all 1,506 Wyckoff positions of the 230 space groups to generate a set of initial structures. During the subsequent structural relaxation with DFT, existing symmetries are preserved, but the symmetries and the space group may change as atoms move to more symmetric positions. By construction, our algorithm generates symmetric structures with high probability without excluding any configurations. This improves the search efficiency, especially for large cells with 20 atoms or more. We apply our SYDSS algorithm to identify stoichiometric (H2O)_n-(NaCl)_m and C_nO_m compounds at high pressure. We predict a novel H2O-NaCl structure with Pnma symmetry to form at 3.4 Mbar, which is within the range of diamond anvil experiments. In addition, we predict a novel C2O structure at 19.8 Mbar and C4O structure at 44.0 Mbar with Pbca and C2/m symmetry respectively.Comment: 8 pages,8 figures, 3 table, Physical Review B, 201
    • …
    corecore