110 research outputs found
Neutrino Oscillations, Fluctuations and Solar Magneto-gravity Waves
This review has two parts. The first part summarizes the current
observational constraints on fluctuations in the solar medium deep within the
solar Radiative Zone, and shows how the KamLAND and SNO-salt data combine to
make the experimental determination of the neutrino oscillation parameters
largely insensitive to prior assumptions about the nature of these
oscillations. As part of a search for plausible sources of solar fluctuations
to which neutrinos could be sensitive, the second part of the talk summarizes a
preliminary analysis of the influence of magnetic fields on helioseismic waves.
Using simplifying assumptions which should apply to modes in the solar
radiative zone, we find a resonance between Alfven waves and helioseismic
g-modes which potentially modifies the solar density profile fairly
significantly over comparatively short distance scales, too narrow to be ruled
out by present-day analyses of p-wave helioseismic spectra.Comment: Plenary talk presented at AHEP 2003, Valencia, Spain, October 200
Nonrenormalization of Flux Superpotentials in String Theory
Recent progress in understanding modulus stabilization in string theory
relies on the existence of a non-renormalization theorem for the 4D
compactifications of Type IIB supergravity which preserve N=1 supersymmetry. We
provide a simple proof of this non-renormalization theorem for a broad class of
Type IIB vacua using the known symmetries of these compactifications, thereby
putting them on a similar footing as the better-known non-renormalization
theorems of heterotic vacua without fluxes. The explicit dependence of the
tree-level flux superpotential on the dilaton field makes the proof more subtle
than in the absence of fluxes.Comment: 16 pages, no figures. Final version, to appear in JHEP. Arguments for
validity of R-symmetry made more explicit. Minor extra comments and
references adde
Branonium
We study the bound states of brane/antibrane systems by examining the motion
of a probe antibrane moving in the background fields of N source branes. The
classical system resembles the point-particle central force problem, and the
orbits can be solved by quadrature. Generically the antibrane has orbits which
are not closed on themselves. An important special case occurs for some
Dp-branes moving in three transverse dimensions, in which case the orbits may
be obtained in closed form, giving the standard conic sections but with a
nonstandard time evolution along the orbit. Somewhat surprisingly, in this case
the resulting elliptical orbits are exact solutions, and do not simply apply in
the limit of asymptotically-large separation or non-relativistic velocities.
The orbits eventually decay through the radiation of massless modes into the
bulk and onto the branes, and we estimate this decay time. Applications of
these orbits to cosmology are discussed in a companion paper.Comment: 34 pages, LaTeX, 4 figures, uses JHEP
Multiple Inflation, Cosmic String Networks and the String Landscape
Motivated by the string landscape we examine scenarios for which inflation is
a two-step process, with a comparatively short inflationary epoch near the
string scale and a longer period at a much lower energy (like the TeV scale).
We quantify the number of -foldings of inflation which are required to yield
successful inflation within this picture. The constraints are very sensitive to
the equation of state during the epoch between the two inflationary periods, as
the extra-horizon modes can come back inside the horizon and become
reprocessed. We find that the number of -foldings during the first
inflationary epoch can be as small as 12, but only if the inter-inflationary
period is dominated by a network of cosmic strings (such as might be produced
if the initial inflationary period is due to the brane-antibrane mechanism). In
this case a further 20 -foldings of inflation would be required at lower
energies to solve the late universe's flatness and horizon problems.Comment: 27 pages, 6 figures; v2: refences adde
Casimir Energies for 6D Supergravities Compactified on T_2/Z_N with Wilson Lines
We compute (as functions of the shape and Wilson-line moduli) the one-loop
Casimir energy induced by higher-dimensional supergravities compactified from
6D to 4D on 2-tori, and on some of their Z_N orbifolds. Detailed calculations
are given for a 6D scalar field having an arbitrary 6D mass m, and we show how
to extend these results to higher-spin fields for supersymmetric 6D theories.
Particular attention is paid to regularization issues and to the identification
of the divergences of the potential, as well as the dependence of the result on
m, including limits for which m^2 A> 1 where A is the volume of
the internal 2 dimensions. Our calculation extends those in the literature to
very general boundary conditions for fields about the various cycles of these
geometries. The results have potential applications towards Supersymmetric
Large Extra Dimensions (SLED) as a theory of the Dark Energy. First, they
provide an explicit calculation within which to follow the dependence of the
result on the mass of the bulk states which travel within the loop, and for
heavy masses these results bear out the more general analysis of the
UV-sensitivity obtained using heat-kernel methods. Second, because the
potentials we find describe the dynamics of the classical flat directions of
these compactifications, within SLED they would describe the present-day
dynamics of the Dark Energy.Comment: 40 pages, 7 figure
SUSY Breaking and Moduli Stabilization from Fluxes in Gauged 6D Supergravity
We construct the 4D N=1 supergravity which describes the low-energy limit of
6D supergravity compactified on a sphere with a monopole background a la Salam
and Sezgin. This provides a simple setting sharing the main properties of
realistic string compactifications such as flat 4D spacetime, chiral fermions
and N=1 supersymmetry as well as Fayet-Iliopoulos terms induced by the
Green-Schwarz mechanism. The matter content of the resulting theory is a
supersymmetric SO(3)xU(1) gauge model with two chiral multiplets, S and T. The
expectation value of T is fixed by the classical potential, and S describes a
flat direction to all orders in perturbation theory. We consider possible
perturbative corrections to the Kahler potential in inverse powers of
and , and find that under certain circumstances, and when taken together
with low-energy gaugino condensation, these can lift the degeneracy of the flat
direction for . The resulting vacuum breaks supersymmetry at moderately
low energies in comparison with the compactification scale, with positive
cosmological constant. It is argued that the 6D model might itself be obtained
from string compactifications, giving rise to realistic string
compactifications on non Ricci flat manifolds. Possible phenomenological and
cosmological applications are briefly discussed.Comment: 32 pages, 2 figures. Uses JHEP3.cls. References fixed and updated,
some minor typos fixed. Corrected minor error concerning Kaluza-Klein scales.
Results remain unchange
MSLED, Neutrino Oscillations and the Cosmological Constant
We explore the implications for neutrino masses and mixings within the
minimal version of the supersymmetric large-extra-dimensions scenario (MSLED).
This model was proposed in {\tt hep-ph/0404135} to extract the phenomenological
implications of the promising recent attempt (in {\tt hep-th/0304256}) to
address the cosmological constant problem. Remarkably, we find that the
simplest couplings between brane and bulk fermions within this approach can
lead to a phenomenologically-viable pattern of neutrino masses and mixings that
is also consistent with the supernova bounds which are usually the bane of
extra-dimensional neutrino models. Under certain circumstances the MSLED
scenario can lead to a lepton mixing (PMNS) matrix close to the so-called
bi-maximal or the tri-bimaximal forms (which are known to provide a good
description of the neutrino oscillation data). We discuss the implications of
MSLED models for neutrino phenomenology.Comment: 38 pages, 1 figure; Reposted with a few additional reference
de Sitter String Vacua from Supersymmetric D-terms
We propose a new mechanism for obtaining de Sitter vacua in type IIB string
theory compactified on (orientifolded) Calabi-Yau manifolds similar to those
recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum
appears in KKLT model after uplifting an AdS vacuum by adding an anti-D3-brane,
which explicitly breaks supersymmetry. We accomplish the same goal by adding
fluxes of gauge fields within the D7-branes, which induce a D-term potential in
the effective 4D action. In this way we obtain dS space as a spontaneously
broken vacuum from a purely supersymmetric 4D action. We argue that our
approach can be directly extended to heterotic string vacua, with the dilaton
potential obtained from a combination of gaugino condensation and the D-terms
generated by anomalous U(1) gauge groups.Comment: 17 pages, 1 figur
Low-Energy Brane-World Effective Actions and Partial Supersymmetry Breaking
As part of a programme for the general study of the low-energy implications
of supersymmetry breaking in brane-world scenarios, we study the nonlinear
realization of supersymmetry which occurs when breaking N=2 to N=1
supergravity. We consider three explicit realizations of this supersymmetry
breaking pattern, which correspond to breaking by one brane, by one antibrane
or by two (or more) parallel branes. We derive the minimal field content, the
effective action and supersymmetry transformation rules for the resulting N=1
theory perturbatively in powers of kappa = 1/M_{Planck}. We show that the way
the massive gravitino and spin-1 fields assemble into N=1 multiplets implies
the existence of direct brane-brane contact interactions at order O(kappa).
This result is contrary to the O(kappa^2) predicted by the sequestering
scenario but in agreement with recent work of Anisimov et al. Our low-energy
approach is model independent and is a first step towards determining the
low-energy implications of more realistic brane models which completely break
all supersymmetries.Comment: Latex, 29 Page
General Brane Geometries from Scalar Potentials: Gauged Supergravities and Accelerating Universes
We find broad classes of solutions to the field equations for d-dimensional
gravity coupled to an antisymmetric tensor of arbitrary rank and a scalar field
with non-vanishing potential. Our construction generates these configurations
from the solution of a single nonlinear ordinary differential equation, whose
form depends on the scalar potential. For an exponential potential we find
solutions corresponding to brane geometries, generalizing the black p-branes
and S-branes known for the case of vanishing potential. These geometries are
singular at the origin with up to two (regular) horizons. Their asymptotic
behaviour depends on the parameters of the model. When the singularity has
negative tension or the cosmological constant is positive we find
time-dependent configurations describing accelerating universes. Special cases
give explicit brane geometries for (compact and non-compact) gauged
supergravities in various dimensions, as well as for massive 10D supergravity,
and we discuss their interrelation. Some examples lift to give new solutions to
10D supergravity. Limiting cases with a domain wall structure preserve part of
the supersymmetries of the vacuum. We also consider more general potentials,
including sums of exponentials. Exact solutions are found for these with up to
three horizons, having potentially interesting cosmological interpretation. We
give several additional examples which illustrate the power of our techniques.Comment: 54 pages, 6 figures. Uses JHEP3. Published versio
- âŠ