332 research outputs found

    Fiscal Sustainability And Fiscal Reaction Functions In The US And UK

    Get PDF
    Following the 2008/9 financial and economic crisis, public debt/GDP ratios in several countries rose to their highest levels in 40 years. Also in the US and the UK did the public debt/GDP ratios increase significantly, thereby putting the spotlight again on fiscal sustainability. Based on past behaviour, this article asks whether fiscal policy in these two countries is likely to be sustainable. The article investigates how the US and UK governments, by changing their deficits, react to changes in their debt positions. To do this, the article estimates fiscal reaction functions using Smooth Transition Regressions. It finds that based on past behaviour, fiscal policy in both the US and UK can be expected to remain sustainable. Based on the same past behaviour, and assuming this behaviour will continue in the future, the article also calculates the levels to which the public debt/GDP ratios in the US and UK can be expected to converge

    Games im Film, Film as Play

    Get PDF

    Estimation of Wheat Plant Density at Early Stages Using High Resolution Imagery

    Get PDF
    Crop density is a key agronomical trait used to manage wheat crops and estimate yield. Visual counting of plants in the field is currently the most common method used. However, it is tedious and time consuming. The main objective of this work is to develop a machine vision based method to automate the density survey of wheat at early stages. RGB images taken with a high resolution RGB camera are classified to identify the green pixels corresponding to the plants. Crop rows are extracted and the connected components (objects) are identified. A neural network is then trained to estimate the number of plants in the objects using the object features. The method was evaluated over three experiments showing contrasted conditions with sowing densities ranging from 100 to 600 seeds.m(-2). Results demonstrate that the density is accurately estimated with an average relative error of 12%. The pipeline developed here provides an efficient and accurate estimate of wheat plant density at early stages

    A high unemployment and labour market segmentation: A three-segment macroeconomic model

    Get PDF
    Background: South Africa suffers from an unusually high unemployment rate – officially averaging 25% since 1999Q3. In addition, depending on whether one uses the official or broad definitions of unemployment, since 2008 there are on average between 2 and 3.3 times as many unemployed people as there are people in the informal sector. Hence the question: why do the unemployed not enter the informal sector to create a livelihood? Aim: To fill this gap we propose a macro-economic framework that incorporates both formal (primary) and informal (secondary) sectors, as well as involuntary unemployment resulting from entry barriers to the labour market. We believe such a model provides a more suitable basis for macroeconomic policy analysis. Setting: Standard macroeconomic theories at best provide a partial explanation for the South African unemployment problem, focusing mostly on the formal sector. Methods: The article uses a theoretical analysis. Results: The article presents a macro-economic framework that incorporates both formal (primary) and informal (secondary) sectors, as well as involuntary unemployment resulting from entry barriers to the labour market. Conclusion: If the assumptions on which the model draws hold in the South African reality, then a solution to the unem-ployment problem involve policies addressing product and labour market structures and behaviour in the primary sector, as well as policies addressing the numerous barriers to entry, such as borrowing constraints, that poten-tial entrants into the secondary sector face

    Safety of Active Implantable Devices during MRI Examinations: A Finite Element Analysis of an Implantable Pump

    Get PDF
    The goal of this study was to propose a general numerical analysis methodology to evaluate the magnetic resonance imaging (MRI)-safety of active implants. Numerical models based on the finite element (FE) technique were used to estimate if the normal operation of an active device was altered during MRI imaging. An active implanted pump was chosen to illustrate the method. A set of controlled experiments were proposed and performed to validate the numerical model. The calculated induced voltages in the important electronic components of the device showed dependence with the MRI field strength. For the MRI radiofrequency fields, significant induced voltages of up to 20 V were calculated for a 0.3T field-strength MRI. For the 1.5 and 3.0T MRIs, the calculated voltages were insignificant. On the other hand, induced voltages up to 11 V were calculated in the critical electronic components for the 3.0T MRI due to the gradient fields. Values obtained in this work reflect to the worst case situation which is virtually impossible to achieve in normal scanning situations. Since the calculated voltages may be removed by appropriate protection circuits, no critical problems affecting the normal operation of the pump were identified. This study showed that the proposed methodology helps the identification of the possible incompatibilities between active implants and MR imaging, and can be used to aid the design of critical electronic systems to ensure MRI-safet

    8-vinyl-deoxyadenosine, an alternative fluorescent nucleoside analog to 2′-deoxyribosyl-2-aminopurine with improved properties

    Get PDF
    We report here the synthesis and the spectroscopic characterization of 8-vinyl-deoxyadenosine (8vdA), a new fluorescent analog of deoxyadenosine. 8vdA was found to absorb and emit in the same wavelength range as 2′-deoxyribosyl-2-aminopurine (2AP), the most frequently used fluorescent nucleoside analog. Though the quantum yield of 8vdA is similar to that of 2AP, its molar absorption coefficient is about twice, enabling a more sensitive detection. Moreover, the fluorescence of 8vdA was found to be sensitive to temperature and solvent but not to pH (around neutrality) or coupling to phosphate groups. Though 8vdA is base sensitive and susceptible to depurination, the corresponding phosphoramidite was successfully prepared and incorporated in oligonucleotides of the type d(CGT TTT XNX TTT TGC) where N = 8vdA and X = A, T or C. The 8vdA-labeled oligonucleotides gave more stable duplexes than the corresponding 2AP-labeled sequences when X = A or T, indicating that 8vdA is less perturbing than 2AP and probably adopts an anti conformation to preserve the Watson–Crick H-bonding. In addition, the quantum yield of 8vdA is significantly higher than 2AP in all tested oligonucleotides in both their single strand and duplex states. The steady-state and time-resolved fluorescence parameters of 8vdA and 2AP were found to depend similarly on the nature of their flanking residues and on base pairing, suggesting that their photophysics are governed by similar mechanisms. Taken together, our data suggest that 8vdA is a non perturbing nucleoside analog that may be used with improved sensitivity for the same applications as 2AP

    Mechanical testing and comparison of porcine tissue, silicones and 3D-printed materials for cardiovascular phantoms

    Get PDF
    Background: Cardiovascular phantoms for patient education, pre-operative planning, surgical training, haemodynamic simulation, and device testing may help improve patient care. However, currently used materials may have different mechanical properties compared to biological tissue. Methods/Aim: The aim of this study was to investigate the mechanical properties of 3D-printing and silicone materials in comparison to biological cardiovascular tissues. Uniaxial cyclic tension testing was performed using dumbbell samples from porcine tissue (aorta, pulmonary artery, right and left ventricle). Flexible testing materials included 15 silicone (mixtures) and three 3D-printing materials. The modulus of elasticity was calculated for different deformation ranges. Results: The modulus of elasticity (0%–60%) for the aorta ranged from 0.16 to 0.18 N/mm^2, for the pulmonary artery from 0.07 to 0.09 N/mm^2, and for the right ventricle as well as the left ventricle short-axis from 0.1 to 0.16 N/mm^2. For silicones the range of modulus of elasticity was 0.02–1.16 N/mm^2, and for the 3D-printed materials from 0.85 to 1.02 N/mm^2. The stress-strain curves of all tissues showed a non-linear behaviour in the cyclic tensile testing, with a distinct toe region, followed by exponential strain hardening behaviour towards the peak elongation. The vessel samples showed a more linear behaviour comparted to myocardial samples. The silicones and 3D printing materials exhibited near-linearity at higher strain ranges, with a decrease in stiffness following the initial deformation. All samples showed a deviation between the loading and unloading curves (hysteresis), and a reduction in peak force over the first few cycles (adaptation effect) at constant deformation. Conclusion: The modulus of elasticity of silicone mixtures is more in agreement to porcine cardiovascular tissues than 3D-printed materials. All synthetic materials showed an almost linear behaviour in the mechanical testing compared to the non-linear behaviour of the biological tissues, probably due to fibre recruitment mechanism in the latter

    Radio-Frequency-Controlled Urea Dosing for NH3-SCR Catalysts : NH3 Storage Influence to Catalyst Performance under Transient Conditions

    Get PDF
    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NOx emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH3) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH3 loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH3 storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH3 storage levels, and NH3 target curves. It could be clearly demonstrated that the right NH3 target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NOx conversion efficiency and without NH3 slip

    Radio-Frequency-Based NH₃-Selective Catalytic Reduction Catalyst Control : Studies on Temperature Dependency and Humidity Influences

    Get PDF
    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals
    • …
    corecore