219 research outputs found
Pre-determining the location of electromigrated gaps by nonlinear optical imaging
In this paper we describe a nonlinear imaging method employed to spatially
map the occurrence of constrictions occurring on an electrically-stressed gold
nanowire. The approach consists at measuring the influence of a tightly focused
ultrafast pulsed laser on the electronic transport in the nanowire. We found
that structural defects distributed along the nanowire are efficient nonlinear
optical sources of radiation and that the differential conductance is
significantly decreased when the laser is incident on such electrically-induced
morphological changes. This imaging technique is applied to pre-determined the
location of the electrical failure before it occurs.Comment: 3 figure
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
In situ U-Th-He geochronology is a potentially disruptive technique that combines laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with laser microprobe noble gas mass spectrometry. Despite its potential to revolutionize (detrital) thermochronology, in situ U-Th-He dating is not widely used due to persistent analytical challenges. A major issue is that current in situ U-Th-He dating approaches require that the U, Th, and He measurements are expressed in units of molar concentration, in contrast with conventional methods, which use units of molar abundance. Whereas molar abundances can be reliably determined by isotope dilution, accurate concentration measurements are not so easy to obtain. In the absence of matrix-matched U-Th concentration standards and accurate He ablation pit measurements, the required molar concentration calculations introduce an uncertainty that is higher than the conventional method, an uncertainty that is itself difficult to accurately quantify. We present a solution to this problem by using proton-induced 3He as a proxy for ablation pit volume and by pairing samples with a standard of known U-Th-He age. Thus, the U-Th-He age equation can be solved using relative rather than absolute concentration measurements. Pilot experiments show that the new method produces accurate results. However, it is prone to overdispersion, which is attributed to gradients in the proton fluence. These gradients can be measured, and their effect can be removed by fixing the geometry of the sample and the standard during the proton irradiation
A zircon case for super-wet arc magmas
Arc magmas have higher water contents (2-6 wt.% H2O) than magmas generated in other tectonic environments, with a growing body of evidence suggesting that some deep arc magmas may be ‘super-wet’ (>6 wt.% H2O). Here, we use thermodynamic modelling to show that the behaviour of zirconium during magmatic differentiation is strongly sensitive to melt water contents. We demonstrate that super-wet magmas crystallise zircon with low, homogeneous titanium concentrations (75th percentile <10 ppm) due to a decrease in zircon saturation temperatures with increasing melt H2O. We find that zircon titanium concentrations record a transition to super-wet magmatism in Central Chile immediately before the formation of the world’s largest porphyry copper deposit cluster at Río Blanco-Los Bronces. Broader analysis shows that low, homogeneous zircon titanium concentrations are present in many magmatic systems. Our study suggests that super-wet magmas are more common than previously envisaged and are fundamental to porphyry copper deposit mineralisation
Zircon-hosted apatite inclusions: A powerful tool for reconstruction of Cl contents in melts
Chlorine in the exsolved volatile phase plays an important role in complexing with metals in the extraction and concentration of metals in magmatic-hydrothermal ore deposits. Therefore, tracking the concentration and evolution of Cl in the parent melt is of particular importance in understanding how such deposits form. In theory, the incorporation of Cl into apatite could be used to track the volatile content of melts; however, low closure temperatures and the rapid diffusion of halogens in apatite make it susceptible to sub-solidus re-equilibration by later thermal events and hydrothermal fluids. This susceptibility compromises its ability to retain the primary halogen signature. However, the common occurrence of apatite as an inclusion phase in zircon crystals, together with the refractory nature of zircon, open up the possibility that such inclusions may preserve primary Clmelt compositions [1]. The Rio-Blanco-Los Bronces porphyry copper district is located in central Chile and hosts several world class porphyry copper deposits as well as barren intrusions [2]. This makes it an excellent area for an investigation of the role of Clmelt in the formation of porphyry copper deposits, as well as the effect of sub-solidus re-equilibration of Cl in apatite. For this study we analysed apatite crystals that occur both in the groundmass and as inclusions in zircons in four samples from the Los Bronces porphyry copper district using EPMA for halogen and major elements and LA-ICP-MS for trace elements. These samples include a barren intrusion unrelated to mineralisation that precedes mineralisation by around 10 Ma, and pre-, syn- and post-mineralisation porphyries. Apatite inclusions hosted in zircon crystals typically exhibit a large range in Cl concentrations (<0.5 –2.5 wt.% Cl), with all inclusion data exhibiting polymodal distributions of Cl concentrations. By contrast, groundmass apatites from all samples are characterised by uniformly low Cl concentrations (<0.5 wt.% Cl). These results are consistent with the apatite crystals in the groundmass having experienced sub-solidus re-equilibration related to the pervasive hydrothermal alteration in the district. The wide range in Cl concentrations recorded by the apatite inclusions is interpreted to reflect changing Clmelt for the duration of apatite and zircon crystallisation, perhaps linked to volatile saturation and preferential partitioning of Cl into the aqueous phase. Additionally, the apatites hosted in zircon crystals show significant inter-sample variations, evolving from low Cl concentration (<0.5 wt. % Cl) in the barren intrusion, to higher Cl concentrations (0.5 – 2.5 wt.% Cl) in the samples closely temporally associated with porphyry Cu mineralisation. These data suggest that Clmelt was significantly higher (0.05 – 0.40 wt.% Clmelt) in the melts associated with porphyry copper mineralisation compared with the precursor barren magmatism (~0.04 wt.% Clmelt) [3]. We conclude that due to the rapid diffusion of halogens in apatite in the presence of melt or hydrothermal fluid, the study of apatite inclusions hosted in zircon crystals is required to reconstruct primary melt compositions and to track the evolution of Cl concentrations in porphyry-forming magmas. This study reveals high Clmelt concentrations in the magmas related to mineralisation in the Los Bronces district, a property that would have facilitated the efficient extraction and concentration of metals. References: [1] Brugge, E. et al. (2019). Proc. 15th SGA Biennial Meeting, Vol. 2, 983-986. [2] Toro, J.C. et al. (2012). SEG Special Publication 16:105-126. [3] Li, H. and Hermann, J. (2017) Am. Mineral. 102:580-594.Abstracts and programme freely available
The high burden of hospitalizations for primary EBV infection: a 6-year prospective survey in a French hospital
AbstractPrimary Epstein-Barr virus infection (PEI) is acquired increasingly later in life in developed countries, involving a growing number of adults. No studies have examined the effect of age on PEI. We conducted a prospective, single-centre, noninterventional survey to assess the clinical and economic effects of PEI care according to age. We included all serology-confirmed cases observed in all departments of a large regional hospital. Clinical and biologic data, therapeutics and costs of care were examined. Over a 6-year period, we included 292 subjects (148 children and 144 adults) with a median age of 15.4 years (range 9 months to 79 years). Adults were hospitalized more often (83% vs. 60%) and for longer periods of time (median 4 days vs. 2 days) than children (p ≤ 0.0001 for both). Two adults required a secondary transfer into the intensive care unit, although no children did. Typically, adults showed higher levels of activated lymphocytes and liver abnormalities. They also required the use of systemic corticosteroids more often (45% vs. 23%, p < 0.0001) and for longer periods of time (median 7 days vs. 3 days, p 0.02) than children. Overall, the costs were significantly higher for adults than for children (median, €1940 vs. €1130, p < 0.0001), mainly because of the frequency and duration of hospitalizations. Age increases the immune response and clinical severity of PEI, resulting in substantial additional costs for the community. Better recognition of the disease in adults could shorten the average length of hospital stay
Tectonic and Crustal Processes Drive Multi-Million Year Arc Magma Evolution Leading up to Porphyry Copper Deposit Formation in Central Chile
Subduction zone magmatism is a major control of volcanism, the generation of modern continental crust and the formation of economically important porphyry Cu–(Mo–Au) deposits. Reading the magmatic record of individual arc segments and constraining the rates of magmatic changes are critical in order to fully understand and quantify the processes that drive magma evolution in subduction settings during arc growth. This study focuses on the San Francisco Batholith and the Rio Blanco-Los Bronces porphyry deposit cluster in central Chile, which provides an igneous rock record over ~13.5 Myr of arc evolution. We use whole-rock geochemistry, zircon geochronology and Hf isotope geochemistry to track changes in the crustal magmatic system of this arc segment during crustal thickening and porphyry Cu deposit formation. By combining the analytical dataset with Monte Carlo fractional crystallisation and assimilation fractional crystallisation modelling, we test a model for significant crustal involvement during magma evolution. Systematic and continuous increases in Dy/Yb, La/Yb, V/Sc and Sr/Y in the magmas over time indicate a transition in the main fractionation assemblage from plagioclase-dominated to amphibole-dominated that reflects deeper crystallisation and/or a higher meltwater content. Concomitant decreases in εHf and Th/La as well as increasing Ba/Th are best explained by assimilation of progressively deeper crustal lithologies from low (Chilenia) to high Ba/Th (Cuyania) basement terranes. Our study highlights that an increasingly hydrous magma and a deepening locus of crustal magma differentiation and assimilation, driven by crustal thickening contemporaneous with increased tectonic convergence and ingression of the aseismic Juan Fernandez ridge, can account for all investigated aspects of the multi-Myr magmatic evolution leading up to the formation of the Rio Blanco-Los Bronces porphyry Cu deposits. Our findings corroborate the importance of high-pressure differentiation of hydrous magma for the formation of Andean-style porphyry deposits. Once magmas favourable for porphyry Cu mineralisation were generated in the lower crust, multiple episodes of efficient magma migration into the upper crust fed several, discrete, shallow magmatic-hydrothermal systems over ~3.5 Myr to form the world’s largest known Cu resource at Rio Blanco-Los Bronces
Influence of magmatic and magmatic-hydrothermal processes on the lithium endowment of micas in the Cornubian Batholith (SW England)
This is the final version. Available on open access from Springer via the DOI in this recordThe Cornubian Batholith (SW England) is an archetypal Variscan rare metal granite with potential for Li-mica mineralization. We present a petrographic, trace element and multivariate statistical study of micas from the Cornubian Batholith granite series and related hydrothermally altered units to assess the role of magmatic vs subsolidus processes and of fluxing elements (F and B) on the Li cycle during the evolution of the system. The mica types are as follows: (1) magmatic, which include Fe-biotite, protolithionite I and phengite-muscovite from the most primitive granites, and zinnwaldite I from more fractionated lithologies; (2) subsolidus, which encompass high-temperature autometasomatic Li-micas and low-temperature hydrothermal muscovite-phengite. Autometasomatic species include protolithionite II, zinnwaldite II and lepidolite, which were observed in the most fractionated and hydrothermally altered units, and occur as replacements of magmatic micas. Low-temperature hydrothermal Li-poor micas formed via alteration of magmatic and autometasomatic micas or as replacement of feldspars, and albeit occur in all studied lithologies they are best represented by the granite facies enriched in metasomatic tourmaline. The evolution of micas follows two major trends underlining a coupling and decoupling between the Li(F) and B fluxes. These include as follows: (1) a Li(F)-progressive trend explaining the formation of protolithionite I and zinnwaldite I, which fractionate Li along with Cs, Nb and Sn during the late-magmatic stages of crystallization, and of zinnwaldite II and lepidolite forming from the re-equilibration of primary micas with high-temperature Li-B-W-Tl-Cs-Mn-W-rich autometasomatic fluids; (2) a Li(F)-retrogressive trend explaining the low-temperature hydrothermal muscovitization, which represents the main Li depletion process. Trace element geochemistry and paragenesis of late muscovite-phengite support that muscovitization is a district-scale process that affected the upper parts of the granite cupolas through acidic and B(Fe-Sn)-saturated hydrothermal fluids associated with metasomatic tourmalinization, which were mixed with a low Eh meteoric component.Natural Environment Research Council (NERC)Ministry of Science and Higher Education of the Republic of Kazakhsta
Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children
Could giardiasis be a risk factor for low zinc status in schoolchildren from northwestern Mexico? A cross-sectional study with longitudinal follow-up
<p>Abstract</p> <p>Background</p> <p>Both giardiasis and zinc deficiency are serious health problems worldwide. In Mexico, the prevalence of <it>G. intestinalis </it>was estimated at 32% in 1994. It remains a health problem in northwestern Mexico. Recent surveys (1987, 1995, and 1999) reported zinc deficiency in the Mexican population. The association of giardiasis and malabsorption of micronutrients has been well documented, although the association with zinc remains controversial. This study investigated the association between giardiasis and zinc deficiency in schoolchildren from northwestern Mexico.</p> <p>Methods</p> <p>We combined a cross-sectional design with a longitudinal follow-up six months after parasite treatment. The baseline sample consisted of 114 schoolchildren (mean age 8.8 yr) from seven suburban public schools, grouped as <it>Giardia</it>-free (<it>n </it>= 65, 57%) and <it>Giardia</it>-infected (<it>n </it>= 49, 43%). Three stool analyses per child were done using Faust's method. Children with giardiasis received secnidazole. Serum zinc was determined by atomic absorption spectrophotometry. Height and weight were measured. Socioeconomic information was obtained in an oral questionnaire, and daily zinc intake was assessed using 24 hour-recalls. Pearson's correlation and ANCOVA and paired t-test analyses were used to determine the association between giardiasis and zinc status.</p> <p>Results</p> <p>Longitudinal analysis demonstrated a significant increase of the mean serum zinc levels in the <it>Giardia</it>-infected group six months after treatment (13.78 vs. 19.24 μmol/L μmol/L; p = 0.001), although no difference was found between the <it>Giardia</it>-free and the <it>Giardia</it>-infected groups (p = 0.86) in the baseline analysis. Z scores for W/A and H/A were lower in the <it>Giardia</it>-infected than in the <it>Giardia</it>-free group (p < 0.05). No difference was observed in the socioeconomic characteristics and mean daily intakes of zinc between the groups (p > 0.05).</p> <p>Conclusions</p> <p>Giardiasis may be a risk factor for zinc deficiency in schoolchildren from northwestern Mexico.</p
- …