859 research outputs found
The effect of polar lipids on tear film dynamics
In this paper we present a mathematical model describing the effect of polar lipids on the evolution of a precorneal tear film, with the aim of explaining the interesting experimentally observed phenomenon that the tear film continues to move upwards even after the upper eyelid has become stationary. The polar lipid is an insoluble surface species that locally alters the surface tension of the tear film. In the lubrication limit, the model reduces to two coupled nonlinear partial differential equations for the film thickness and the concentration of lipid. We solve the system numerically and observe that the presence of the lipid causes an increase in flow of liquid up the eye. We further exploit the size of the parameters in the problem to explain the initial evolution of the system
Aldose Reductase Gene Polymorphisms and Diabetic Retinopathy Susceptibility
OBJECTIVE: Aldose reductase (ALR) is involved in diabetic microvascular damage via the polyol pathway. A recent meta-analysis found genetic variation in the ALR gene (AKR1B1) to be significantly associated with diabetic retinopathy (DR). We investigated the genetic association of AKR1B1 with DR. RESEARCH DESIGN AND METHODS: The study enrolled 909 individuals with diabetes. Participants were genotyped for an AKR1B1 (CA)n microsatellite and 14 tag single nucleotide polymorphisms, and ophthalmological assessment was performed. RESULTS: A total of 514 individuals were found to have DR. rs9640883 was significantly associated with DR (P = 0.0005). However, AKR1B1 variation was not independently associated with DR development after adjusting for relevant clinical parameters. rs9640883 was associated with duration of diabetes (P = 0.002). CONCLUSION: Many previous reports have failed to account for known risk factors for DR. The commonly reported association of AKR1B1 with DR may be due to an association of the gene with younger age at onset of diabetes.Sotoodeh Abhary, Kathryn P. Burdon, Kate J. Laurie, Stacey Thorpe, John Landers, Lucy Goold, Stewart Lake, Nikolai Petrovsky, and Jamie E. Crai
Genetic association at the 9p21 glaucoma locus contributes to sex bias in normal-tension glaucoma
Purpose: Many genome-wide association studies have identified common single nucleotide polymorphisms (SNPs) at the 9p21 glaucoma locus (CDKN2B/CDKN2B-AS1) to be significantly associated with primary open-angle glaucoma (POAG), with association being stronger in normal tension glaucoma (NTG) and advanced glaucoma. We aimed to determine whether any observed differences in genetic association at the 9p21 locus are influenced by sex. Methods: Sex was assessed as a risk factor for POAG for 2241 glaucoma participants from the Australian and New Zealand Registry of Advanced Glaucoma, the Glaucoma Inheritance Study in Tasmania, and the Flinders Medical Centre. A total of 3176 controls were drawn from the Blue Mountains Eye Study and South Australia: 1523 advanced POAG and 718 nonadvanced POAG cases were genotyped along with 3176 controls. We selected 13 SNPs at the 9p21 locus, and association results were subanalyszd by sex for high-tension glaucoma (HTG) and NTG. Odds ratios (ORs) between sexes were compared. Results: A sex bias was present within advanced NTG cases (57.1% female versus 42.9% male, P = 0.0026). In all POAG cases, the strongest associated SNP at 9p21 was rs1063192 (OR, 1.43; P = 4 × 10⁻¹⁸). This association was stronger in females (OR, 1.5; P = 5 × 10⁻¹³) than in males (OR, 1.35; P = 7 × 10⁻⁷), with a statistically significant difference in female to male OR comparison (P = 1.0 × 10⁻²). An NTG to HTG subanalysis yielded statistically significant results only in females (OR, 1.63; P = 1.5 × 10⁻⁴) but not in males (OR, 1.15; P = 2.8 × 10⁻¹), with a statistically significant difference in female to male OR comparison (P = 1.4 × 10⁻⁴). Conclusions: This study demonstrated that female sex is a risk factor for developing advanced NTG. The stronger genetic signals at the 9p21 locus among females may contribute at least in part to the observed sex bias for NTG.Soo Khai Ng, Kathryn P. Burdon, Jude T. Fitzgerald, Tiger Zhou, Rhys Fogarty, Emmanuelle Souzeau, John Landers, Richard A. Mills, Robert J. Casson, Bronwyn Ridge, Stuart L. Graham, Alex W. Hewitt, David A. Mackey, Paul R. Healey, Jie Jin Wang, Paul Mitchell, Stuart MacGregor, and Jamie E. Crai
SimSpin v2.6.0 -- Constructing synthetic spectral IFU cubes for comparison with observational surveys
In this work, we present a methodology and a corresponding code-base for
constructing mock integral field spectrograph (IFS) observations of simulated
galaxies in a consistent and reproducible way. Such methods are necessary to
improve the collaboration and comparison of observation and theory results, and
accelerate our understanding of how the kinematics of galaxies evolve over
time. This code, SimSpin, is an open-source package written in R, but also with
an API interface such that the code can be interacted with in any coding
language. Documentation and individual examples can be found at the open-source
website connected to the online repository. SimSpin is already being utilised
by international IFS collaborations, including SAMI and MAGPI, for generating
comparable data sets from a diverse suite of cosmological hydrodynamical
simulations.Comment: 20 pages, 15 figures, 2 tables. Accepted for publication in PASA.
30/08/2
A practical approach to, diagnosis, assessment and management of idiopathic intracranial hypertension
Adult patients who present with papilloedema and symptoms of raised intracranial pressure need urgent multidisciplinary assessment including neuroimaging, to exclude life-threatening causes. Where there is no apparent underlying cause for the raised intracranial pressure, patients are considered to have idiopathic intracranial hypertension (IIH). The incidence of IIH is increasing in line with the global epidemic of obesity. There are controversial issues in its diagnosis and management. This paper gives a practical approach to assessing patients with papilloedema, its investigation and the subsequent management of patients with IIH
Recommended from our members
Genetically Determined Plasma Lipid Levels and Risk of Diabetic Retinopathy: A Mendelian Randomization Study.
Results from observational studies examining dyslipidemia as a risk factor for diabetic retinopathy (DR) have been inconsistent. We evaluated the causal relationship between plasma lipids and DR using a Mendelian randomization approach. We pooled genome-wide association studies summary statistics from 18 studies for two DR phenotypes: any DR (N = 2,969 case and 4,096 control subjects) and severe DR (N = 1,277 case and 3,980 control subjects). Previously identified lipid-associated single nucleotide polymorphisms served as instrumental variables. Meta-analysis to combine the Mendelian randomization estimates from different cohorts was conducted. There was no statistically significant change in odds ratios of having any DR or severe DR for any of the lipid fractions in the primary analysis that used single nucleotide polymorphisms that did not have a pleiotropic effect on another lipid fraction. Similarly, there was no significant association in the Caucasian and Chinese subgroup analyses. This study did not show evidence of a causal role of the four lipid fractions on DR. However, the study had limited power to detect odds ratios less than 1.23 per SD in genetically induced increase in plasma lipid levels, thus we cannot exclude that causal relationships with more modest effect sizes exist
Short Lag Times for Invasive Tropical Plants: Evidence from Experimental Plantings in Hawai'i
Background: The lag time of an invasion is the delay between arrival of an introduced species and its successful spread in a new area. To date, most estimates of lag times for plants have been indirect or anecdotal, and these estimates suggest that plant invasions are often characterized by lag times of 50 years or more. No general estimates are available of lag times for tropical plant invasions. Historical plantings and documentation were used to directly estimate lag times for tropical plant invasions in Hawai’i. Methodology/Principal Findings: Historical planting records for the Lyon Arboretum dating back to 1920 were examined to identify plants that have since become invasive pests in the Hawaiian Islands. Annual reports describing escape from plantings were then used to determine the lag times between initial plantings and earliest recorded spread of the successful invaders. Among 23 species that eventually became invasive pests, the average lag time between introduction and first evidence of spread was 14 years for woody plants and 5 years for herbaceous plants. Conclusions/Significance: These direct estimates of lag times are as much as an order of magnitude shorter than previous, indirect estimates, which were mainly based on temperate plants. Tropical invaders may have much shorter lag times than temperate species. A lack of direct and deliberate observations may have also inflated many previous lag time estimates. Although there have been documented cases of long lag times due to delayed arrival of a mutualist or environmenta
Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater
Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.e., synthetic chemicals) and microbes (including antibiotic-resistant bacteria) to receiving environments. This pollution may have pervasive impacts on biodiversity and ecosystem services. Viewed through multiple lenses of macroecological and ecotoxicological theory, we combined field, flume, and laboratory experiments to determine the effects of wastewater (WW) on microbial communities and organic-matter processing using a standardized decomposition assay. First, we conducted a mensurative experiment sampling 60 locations above and below WWTP discharges in 20 Swiss streams. Microbial respiration and decomposition rates were positively influenced by WW inputs via warming and nutrient enrichment, but with a notable exception: WW decreased the activation energy of decomposition, indicating a "slowing" of this fundamental ecosystem process in response to temperature. Second, next-generation sequencing indicated that microbial community structure below WWTPs was altered, with significant compositional turnover, reduced richness, and evidence of negative MP influences. Third, a series of flume experiments confirmed that although diluted WW generally has positive influences on microbial-mediated processes, the negative effects of MPs are "masked" by nutrient enrichment. Finally, transplant experiments suggested that WW-borne microbes enhance decomposition rates. Taken together, our results affirm the multiple stressor paradigm by showing that different aspects of WW (warming, nutrients, microbes, and MPs) jointly influence ecosystem functioning in complex ways. Increased respiration rates below WWTPs potentially generate ecosystem "disservices" via greater carbon evasion from streams and rivers. However, toxic MP effects may fundamentally alter ecological scaling relationships, indicating the need for a rapprochement between ecotoxicological and macroecological perspectives
- …