121 research outputs found
Collective phase synchronization in locally-coupled limit-cycle oscillators
We study collective behavior of locally-coupled limit-cycle oscillators with
scattered intrinsic frequencies on -dimensional lattices. A linear analysis
shows that the system should be always desynchronized up to . On the other
hand, numerical investigation for and 6 reveals the emergence of the
synchronized (ordered) phase via a continuous transition from the fully random
desynchronized phase. This demonstrates that the lower critical dimension for
the phase synchronization in this system is $d_{l}=4
Some new efficient multipoint iterative methods for solving nonlinear systems of equations
It is attempted to put forward a new multipoint iterative method of sixth-order convergence for approximating solutions of nonlinear systems of equations. It requires the evaluation of two vector-function and two Jacobian matrices per iteration. Furthermore, we use it as a predictor to derive a general multipoint method. Convergence error analysis, estimating computational complexity, numerical implementation and comparisons are given to verify applicability and validity for the proposed methods.This research was supported by Islamic Azad University - Hamedan Branch, Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and Universitat Politecnica de Valencia SP20120474.Lotfi, T.; Bakhtiari, P.; Cordero Barbero, A.; Mahdiani, K.; Torregrosa SĂĄnchez, JR. (2015). Some new efficient multipoint iterative methods for solving nonlinear systems of equations. International Journal of Computer Mathematics. 92(9):1921-1934. https://doi.org/10.1080/00207160.2014.946412S1921193492
Apparent-Strain Correction for Combined Thermal and Mechanical Testing
Combined thermal and mechanical testing requires that the total strain be corrected for the coefficient of thermal expansion mismatch between the strain gage and the specimen or apparent strain when the temperature varies while a mechanical load is being applied. Collecting data for an apparent strain test becomes problematic as the specimen size increases. If the test specimen cannot be placed in a variable temperature test chamber to generate apparent strain data with no mechanical loads, coupons can be used to generate the required data. The coupons, however, must have the same strain gage type, coefficient of thermal expansion, and constraints as the specimen to be useful. Obtaining apparent-strain data at temperatures lower than -320 F is challenging due to the difficulty to maintain steady-state and uniform temperatures on a given specimen. Equations to correct for apparent strain in a real-time fashion and data from apparent-strain tests for composite and metallic specimens over a temperature range from -450 F to +250 F are presented in this paper. Three approaches to extrapolate apparent-strain data from -320 F to -430 F are presented and compared to the measured apparent-strain data. The first two approaches use a subset of the apparent-strain curves between -320 F and 100 F to extrapolate to -430 F, while the third approach extrapolates the apparent-strain curve over the temperature range of -320 F to +250 F to -430 F. The first two approaches are superior to the third approach but the use of either of the first two approaches is contingent upon the degree of non-linearity of the apparent-strain curve
On the gravitational, dilatonic and axionic radiative damping of cosmic strings
We study the radiation reaction on cosmic strings due to the emission of
dilatonic, gravitational and axionic waves. After verifying the (on average)
conservative nature of the time-symmetric self-interactions, we concentrate on
the finite radiation damping force associated with the half-retarded minus
half-advanced ``reactive'' fields. We revisit a recent proposal of using a
``local back reaction approximation'' for the reactive fields. Using
dimensional continuation as convenient technical tool, we find, contrary to
previous claims, that this proposal leads to antidamping in the case of the
axionic field, and to zero (integrated) damping in the case of the
gravitational field. One gets normal positive damping only in the case of the
dilatonic field. We propose to use a suitably modified version of the local
dilatonic radiation reaction as a substitute for the exact (non-local)
gravitational radiation reaction. The incorporation of such a local
approximation to gravitational radiation reaction should allow one to complete,
in a computationally non-intensive way, string network simulations and to give
better estimates of the amount and spectrum of gravitational radiation emitted
by a cosmologically evolving network of massive strings.Comment: 48 pages, RevTex, epsfig, 1 figure; clarification of the domain of
validity of the perturbative derivation of the string equations of motion,
and of their renormalizabilit
Steady and Stable: Numerical Investigations of Nonlinear Partial Differential Equations
Excerpt: Mathematics is a language which can describe patterns in everyday life as well as abstract concepts existing only in our minds. Patterns exist in data, functions, and sets constructed around a common theme, but the most tangible patterns are visual. Visual demonstrations can help undergraduate students connect to abstract concepts in advanced mathematical courses. The study of partial differential equations, in particular, benefits from numerical analysis and simulation
Nonperturbative aspects of the quark-photon vertex
The electromagnetic interaction with quarks is investigated through a
relativistic, electromagnetic gauge-invariant treatment. Gluon dressing of the
quark-photon vertex and the quark self-energy functions is described by the
inhomogeneous Bethe-Salpeter equation in the ladder approximation and the
Schwinger-Dyson equation in the rainbow approximation respectively. Results for
the calculation of the quark-photon vertex are presented in both the time-like
and space-like regions of photon momentum squared, however emphasis is placed
on the space-like region relevant to electron scattering. The treatment
presented here simultaneously addresses the role of dynamically generated
vector bound states and the approach to asymptotic behavior. The
resulting description is therefore applicable over the entire range of momentum
transfers available in electron scattering experiments. Input parameters are
limited to the model gluon two-point function, which is chosen to reflect
confinement and asymptotic freedom, and are largely constrained by the obtained
bound-state spectrum.Comment: 8 figures available on request by email, 25 pages, Revtex,
DOE/ER/40561-131-INT94-00-5
Masses of light tetraquarks and scalar mesons in the relativistic quark model
Masses of the ground state light tetraquarks are dynamically calculated in
the framework of the relativistic diquark-antidiquark picture. The internal
structure of the diquark is taken into account by calculating the form factor
of the diquark-gluon interaction in terms of the overlap integral of the
diquark wave functions. It is found that scalar mesons with masses below 1 GeV:
f_0(600) (\sigma), K^*_0(800) (\kappa), f_0(980) and a_0(980) agree well with
the light tetraquark interpretation.Comment: 9 pages, Report-no adde
Axion Radiation from Strings
This paper revisits the problem of the string decay contribution to the axion
cosmological energy density. We show that this contribution is proportional to
the average relative increase when axion strings decay of a certain quantity
which we define. We carry out numerical simulations of the
evolution and decay of circular and non-circular string loops, of bent strings
with ends held fixed, and of vortex-antivortex pairs in two dimensions. In the
case of string loops and of vortex-antivortex pairs, decreases by
approximately 20%. In the case of bent strings, remains constant
or increases slightly. Our results imply that the string decay contribution to
the axion energy density is of the same order of magnitude as the
well-understood contribution from vacuum realignment.Comment: 29 pages, 10 figure
The velocity potential and the interacting force for two spheres moving perpendicularly to the line joining their centers
The velocity potential around two spheres moving perpendicularly to the line joining their centers is given by a series of spherical harmonics. The appropriateness of the truncation is evaluated by determining the residual normal surface velocity on the spheres. In evaluating the residual normal velocity, a recursive procedure is constructed to evaluate the spherical harmonics to reduce computational effort and truncation error as compared to direct transformation or numerical integration. We estimate the lift force coefficient for touching spheres to be 0.577771, compared to the most accurate earlier estimate of 0.51435 by Miloh (1977).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42701/1/10665_2004_Article_BF00127479.pd
- âŚ