136 research outputs found

    Formation of Nanoclusters and Nanopillars in Nonequilibrium Surface Growth for Catalysis Applications: Growth by Diffusional Transport of Matter in Solution Synthesis

    Full text link
    Growth of nanoclusters and nanopillars is considered in a model of surface deposition of building blocks (atoms) diffusionally transported from solution to the forming surface structure. Processes of surface restructuring are also accounted for in the model, which then yields morphologies of interest in catalysis applications. Kinetic Monte Carlo numerical approach is utilized to explore the emergence of FCC-symmetry surface features in Pt-type metal nanostructures. Available results exemplify evaluation of the fraction of the resulting active sites with desirable properties for catalysis, such as (111)-like coordination, as well as suggest optimal growth regimes

    Employing an open-source tool to assess astrocyte tridimensional structure

    Get PDF
    Astrocytes display important features that allow them to maintain a close dialog with neurons, ultimately impacting brain function. The complex morphological structure of astrocytes is crucial to the role of astrocytes in brain networks. Therefore, assessing morphologic features of astrocytes will help provide insights into their physiological relevance in healthy and pathological conditions. Currently available tools that allow the tridimensional reconstruction of astrocytes present a number of disadvantages, including the need for advanced computational skills and powerful hardware, and are either time-consuming or costly. In this study, we optimized and validated the FIJI-ImageJ, Simple Neurite Tracer (SNT) plugin, an open-source software that aids in the reconstruction of GFAP-stained structure of astrocytes. We describe (1) the loading of confocal microscopy Z-stacks, (2) the selection criteria, (3) the reconstruction process, and (4) the post-reconstruction analysis of morphological features (process length, number, thickness, and arbor complexity). SNT allows the quantification of astrocyte morphometric parameters in a simple, efficient, and semi-automated manner. While SNT is simple to learn, and does not require advanced computational skills, it provides reproducible results, in different brain regions or pathophysiological states.The authors acknowledge funding from national funds through the FCT—Foundation for Science and Technology—project (PTDC/SAU-NSC/118194/2010) to G.T., V.M.S., S.G.G. and J.F.O., and fellowships (SFRH/BD/89714/2012 to V.M.S., SFRH/BPD/97281/2013 to J.F.O., SFRH/BD/101298/2014 to S.G.G., PD/BD/114120/2015 to S.P.N, and PD/BD/127822/2016 to G.T.); Marie Curie Fellowship FP7-PEOPLE-2010-IEF 273936 and BIAL Foundation Grants and 207/14 to J.F.O.; QREN and FEDER funds through Operational program for competitiveness factors—COMPETE, “ON.2 SR&TD Integrated Program—NORTE-07-0124-FEDER-000021”; National and European funds through FCT, and FEDER through COMPETE (PEst-C/SAU/LA0026/2011 and FCOMP-01-0124-FEDER-022724; PEst-C/SAU/LA0026/2013 and FCOMP-01-0124-FEDER-037298, respectively)info:eu-repo/semantics/publishedVersio

    Conflict of Interest in Clinical Practice Guideline Development: A Systematic Review

    Get PDF
    Background: There is an emerging literature on the existence and effect of industry relationships on physician and researcher behavior. Much less is known, however, about the effects of these relationships and other conflicts of interest (COI) on clinical practice guideline (CPG) development and recommendations. We performed a systematic review of the prevalence of COI and its effect on CPG recommendations. Methodology/Principal Findings: We searched Medline (1980 to March, 2011) for studies that examined the effect of COI on CPG development and/or recommendations. Data synthesis was qualitative. Twelve studies fulfilled inclusion criteria; 9 were conducted in the US. All studies reported on financial relationships of CPG authors with the pharmaceutical industry; 1 study also examined relationships with diagnostic testing and insurance companies. The majority of guidelines had authors with industry affiliations, including consultancies (authors with relationship, range 6–80%); research support (4–78%); equity/stock ownership (2–17%); or any COI (56–87%). Four studies reported multiple types of financial interactions for individual authors (number of types per author: range 2 to 10 or more). Data on the effect of COI on CPG recommendations were confined to case studies wherein authors with specific financial ties appeared to benefit from the related CPG recommendations. In a single study, few authors believed that their relationships influenced their recommendations. No studies reported on intellectual COI in CPGs

    Aberrant iPSC-derived human astrocytes in Alzheimer's disease

    Get PDF
    The pathological potential of human astroglia in Alzheimer's disease (AD) was analysed in vitro using induced pluripotent stem cell (iPSC) technology. Here, we report development of a human iPSC-derived astrocyte model created from healthy individuals and patients with either early-onset familial AD (FAD) or the late-onset sporadic form of AD (SAD). Our chemically-defined and highly efficient model provides >95% homogeneous populations of human astrocytes within 30 days of differentiation from cortical neural progenitor cells (NPCs). All astrocytes expressed functional markers including; glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1), S100B and glutamine synthetase (GS) comparable to that of adult astrocytes in vivo. However, induced astrocytes derived from both SAD and FAD patients exhibit a pronounced pathological phenotype, with a significantly less complex morphological appearance, overall atrophic profiles, and abnormal localisation of key functional astroglial markers. Furthermore, NPCs derived from identical patients did not show any differences, therefore, validating that remodelled astroglia are not as a result of defective neuronal intermediates. This work not only presents a novel model to study the mechanisms of human astrocytes in vitro, but also provides an ideal platform for further interrogation of early astroglial cell-autonomous events in AD and the possibility of identification of novel therapeutic targets for the treatment of AD

    The Debate About the Consequences of Job Displacement

    Get PDF

    The Vein Patterning 1 (VEP1) Gene Family Laterally Spread through an Ecological Network

    Get PDF
    Lateral gene transfer (LGT) is a major evolutionary mechanism in prokaryotes. Knowledge about LGT— particularly, multicellular— eukaryotes has only recently started to accumulate. A widespread assumption sees the gene as the unit of LGT, largely because little is yet known about how LGT chances are affected by structural/functional features at the subgenic level. Here we trace the evolutionary trajectory of VEin Patterning 1, a novel gene family known to be essential for plant development and defense. At the subgenic level VEP1 encodes a dinucleotide-binding Rossmann-fold domain, in common with members of the short-chain dehydrogenase/reductase (SDR) protein family. We found: i) VEP1 likely originated in an aerobic, mesophilic and chemoorganotrophic α-proteobacterium, and was laterally propagated through nets of ecological interactions, including multiple LGTs between phylogenetically distant green plant/fungi-associated bacteria, and five independent LGTs to eukaryotes. Of these latest five transfers, three are ancient LGTs, implicating an ancestral fungus, the last common ancestor of land plants and an ancestral trebouxiophyte green alga, and two are recent LGTs to modern embryophytes. ii) VEP1's rampant LGT behavior was enabled by the robustness and broad utility of the dinucleotide-binding Rossmann-fold, which provided a platform for the evolution of two unprecedented departures from the canonical SDR catalytic triad. iii) The fate of VEP1 in eukaryotes has been different in different lineages, being ubiquitous and highly conserved in land plants, whereas fungi underwent multiple losses. And iv) VEP1-harboring bacteria include non-phytopathogenic and phytopathogenic symbionts which are non-randomly distributed with respect to the type of harbored VEP1 gene. Our findings suggest that VEP1 may have been instrumental for the evolutionary transition of green plants to land, and point to a LGT-mediated ‘Trojan Horse’ mechanism for the evolution of bacterial pathogenesis against plants. VEP1 may serve as tool for revealing microbial interactions in plant/fungi-associated environments

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications
    corecore