100 research outputs found

    Spectral stability of metric-measure Laplacians

    Get PDF
    We consider a "convolution mm-Laplacian" operator on metric-measure spaces and study its spectral properties. The definition is based on averaging over small metric balls. For reasonably nice metric-measure spaces we prove stability of convolution Laplacian's spectrum with respect to metric-measure perturbations and obtain Weyl-type estimates on the number of eigenvalues

    The connected components of the space of Alexandrov surfaces

    Full text link
    Denote by A(κ)\mathcal{A}(\kappa) the set of all compact Alexandrov surfaces with curvature bounded below by κ\kappa without boundary, endowed with the topology induced by the Gromov-Hausdorff metric. We determine the connected components of A(κ)\mathcal{A}(\kappa) and of its closure

    A simple proof of Perelman's collapsing theorem for 3-manifolds

    Full text link
    We will simplify earlier proofs of Perelman's collapsing theorem for 3-manifolds given by Shioya-Yamaguchi and Morgan-Tian. Among other things, we use Perelman's critical point theory (e.g., multiple conic singularity theory and his fibration theory) for Alexandrov spaces to construct the desired local Seifert fibration structure on collapsed 3-manifolds. The verification of Perelman's collapsing theorem is the last step of Perelman's proof of Thurston's Geometrization Conjecture on the classification of 3-manifolds. Our proof of Perelman's collapsing theorem is almost self-contained, accessible to non-experts and advanced graduate students. Perelman's collapsing theorem for 3-manifolds can be viewed as an extension of implicit function theoremComment: v1: 9 Figures. In this version, we improve the exposition of our arguments in the earlier arXiv version. v2: added one more grap

    Essential self-adjointness of magnetic Schr\"odinger operators on locally finite graphs

    Full text link
    We give sufficient conditions for essential self-adjointness of magnetic Schr\"odinger operators on locally finite graphs. Two of the main theorems of the present paper generalize recent results of Torki-Hamza.Comment: 14 pages; The present version differs from the original version as follows: the ordering of presentation has been modified in several places, more details have been provided in several places, some notations have been changed, two examples have been added, and several new references have been inserted. The final version of this preprint will appear in Integral Equations and Operator Theor

    Polynomial Growth Harmonic Functions on Finitely Generated Abelian Groups

    Full text link
    In the present paper, we develop geometric analytic techniques on Cayley graphs of finitely generated abelian groups to study the polynomial growth harmonic functions. We develop a geometric analytic proof of the classical Heilbronn theorem and the recent Nayar theorem on polynomial growth harmonic functions on lattices \mathds{Z}^n that does not use a representation formula for harmonic functions. We also calculate the precise dimension of the space of polynomial growth harmonic functions on finitely generated abelian groups. While the Cayley graph not only depends on the abelian group, but also on the choice of a generating set, we find that this dimension depends only on the group itself.Comment: 15 pages, to appear in Ann. Global Anal. Geo

    Limit theorems for self-similar tilings

    Full text link
    We study deviation of ergodic averages for dynamical systems given by self-similar tilings on the plane and in higher dimensions. The main object of our paper is a special family of finitely-additive measures for our systems. An asymptotic formula is given for ergodic integrals in terms of these finitely-additive measures, and, as a corollary, limit theorems are obtained for dynamical systems given by self-similar tilings.Comment: 36 pages; some corrections and improved exposition, especially in Section 4; references adde

    A Note on the Symmetry Reduction of SU(2) on Horizons of Various Topologies

    Full text link
    It is known that the SU(2) degrees of freedom manifest in the description of the gravitational field in loop quantum gravity are generally reduced to U(1) degrees of freedom on an S2S^2 isolated horizon. General relativity also allows black holes with planar, toroidal, or higher genus topology for their horizons. These solutions also meet the criteria for an isolated horizon, save for the topological criterion, which is not crucial. We discuss the relevant corresponding symmetry reduction for black holes of various topologies (genus 0 and 2\geq 2) here and discuss its ramifications to black hole entropy within the loop quantum gravity paradigm. Quantities relevant to the horizon theory are calculated explicitly using a generalized ansatz for the connection and densitized triad, as well as utilizing a general metric admitting hyperbolic sub-spaces. In all scenarios, the internal symmetry may be reduced to combinations of U(1).Comment: 13 pages, two figures. Version 2 has several references updated and added, as well as some minor changes to the text. Accepted for publication in Class. Quant. Gra

    A pointwise Lipschitz selection theorem

    Get PDF
    We prove that any correspondence (multi-function) mapping a metric space into a Banach space that satisfies a certain pointwise Lipschitz condition, always has a continuous selection that is pointwise Lipschitz on a dense set of its domain. We apply our selection theorem to demonstrate a slight improvement to a well-known version of the classical Bartle-Graves Theorem: Any continuous linear surjection between infinite dimensional Banach spaces has a positively homogeneous continuous right inverse that is pointwise Lipschitz on a dense meager set of its domain. An example devised by Aharoni and Lindenstrauss shows that our pointwise Lipschitz selection theorem is in some sense optimal: It is impossible to improve our pointwise Lipschitz selection theorem to one that yields a selection that is pointwise Lipschitz on the whole of its domain in general.The Claude Leon Foundationhttps://link.springer.com/journal/112282020-03-01hj2019Mathematics and Applied Mathematic
    corecore