475 research outputs found

    The physiology and genetics of stomatal adjustment under fluctuating and stressed environments

    Get PDF
    Stomata are pores in the leaf that allow gas exchange where water vapor leaves the plant and carbon dioxide enters. Under natural condition, plants always experience at a fluctuating light regime (shade-/sun-fleck) and due to global climate change, occasionally extreme high temperature and CO2 enrichment will be inevitable occurred, which dramatically affects stomatal response, and trade-off between water-use efficiency and photosynthesis. Response of stomata to fluctuating and stressed environments determines optimized strategy of plants directing to water save or photosynthesis. Dynamic adjustments of stomata play an equivalent role as steady-state stomatal characteristics. Evolutionary approach indicated that stomatal-dynamic adjustments interacting with historical environments or life histories could be genetically controlled and environmentally selected. In this article, we reviewed physiological response of stomatal dynamic to changing enironments including our previous works, and discussed the possibility of genetic improvements on stomatal adjustments by estimating broad-sense heritability and SNP heritability of stomatal pattern. To gain insight into the framework of stomatal genetics, we highlighted the importance of combining multidisciplinary techniques, such as mathematic modeling, quantitative genetics, molecular biology and equipments developments

    PIMS (Positioning In Macular hole Surgery) trial – a multicentre interventional comparative randomised controlled clinical trial comparing face-down positioning, with an inactive face-forward position on the outcome of surgery for large macular holes: study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Idiopathic macular holes are an important cause of blindness. They have an annual incidence of 8 per 100,000 individuals, and prevalence of 0.2 to 3.3 per 1000 individuals with visual impairment. The condition occurs more frequently in adults aged 75 years or older. Macular holes can be repaired by surgery in which the causative tractional forces in the eye are released and a temporary bubble of gas is injected. To promote successful hole closure individuals may be advised to maintain a face-down position for up to 10 days following surgery. The aim of this study is to determine whether advice to position face-down improves the surgical success rate of closure of large (>400 μm) macular holes, and thereby reduces the need for further surgery. METHODS/DESIGN: This will be a multicentre interventional, comparative randomised controlled clinical trial comparing face-down positioning with face-forward positioning. At the conclusion of standardised surgery across all sites, participants still eligible for inclusion will be allocated randomly 1:1 to 1 of the 2 treatment arms stratified by site, using random permuted blocks of size 4 or 6 in equal proportions. We will recruit 192 participants having surgery for large macular holes (>400 μm); 96 in each of the 2 arms of the study. The primary objective is to determine the impact of face-down positioning on the likelihood of closure of large (≥400 μm) full-thickness macular holes following surgery. DISCUSSION: This will be the first multicentre randomised control trial to investigate the value of face-down positioning following macular hole standardised surgery. TRIAL REGISTRATION: UK CRN: 17966 (date of registration 26 November 2014)

    Exploring Space and Place With Walking Interviews

    Get PDF
    This article explores the use of walking interviews as a research method. In spite of a wave of interest in methods which take interviewing out of the "safe," stationary environment, there has been limited work critically examining the techniques for undertaking such work. Curiously for a method which takes an explicitly spatial approach, few projects have attempted to rigorously connect what participants say with where they say it. The article reviews three case studies where the authors have used different techniques, including GPS, for locating the interview in space. The article concludes by arguing that researchers considering using walking interviews need to think carefully about what kinds of data they wish to generate when deciding which approach to adopt

    Data-Driven Thermal Anomaly Detection in Large Battery Packs

    Full text link
    The early detection and tracing of anomalous operations in battery packs are critical to improving performance and ensuring safety. This paper presents a data-driven approach for online anomaly detection in battery packs that uses real-time voltage and temperature data from multiple Li-ion battery cells. Mean-based residuals are generated for cell groups and evaluated using Principal Component Analysis. The evaluated residuals are then thresholded using a cumulative sum control chart to detect anomalies. The mild external short circuits associated with cell balancing are detected in the voltage signals and necessitate voltage retraining after balancing. Temperature residuals prove to be critical, enabling anomaly detection of module balancing events within 14 min that are unobservable from the voltage residuals. Statistical testing of the proposed approach is performed on the experimental data from a battery electric locomotive injected with model-based anomalies. The proposed anomaly detection approach has a low false-positive rate and accurately detects and traces the synthetic voltage and temperature anomalies. The performance of the proposed approach compared with direct thresholding of mean-based residuals shows a 56% faster detection time, 42% fewer false negatives, and 60% fewer missed anomalies while maintaining a comparable false-positive rate

    CubeSat Active Thermal Control via Microvascular Carbon Fiber Channel Radiator

    Get PDF
    Small spacecraft rarely have space for any thermal control subsystems and often must perform operations in “burst” mode as a result. The few spacecraft who do have control rely on low-complexity thermal control systems which conduct heat to the bus structure and then radiate the heat away. These simplistic techniques are sufficient for low power missions in Low Earth Orbit (LEO) but are not capable of dumping the heat produced in new mission profiles that are in development. This is due to small spacecraft incorporating increasingly advanced subsystems which have difficult thermal control requirements such as propulsion systems or high-power antennas. The University of Illinois at Urbana-Champaign, in partnership with NASA Ames Research Center, is developing a thermal control system for small spacecraft. This control system uses a deployable radiator panel made from carbon fiber with micro-vascular circulatory system for coolant. This paper is a follow-up on the previous year’s SmallSat conference. A bench prototype of the thermal control subsystem was designed and built. The prototype underwent a range of thermal and vibration tests at NASA Ames. Test results and lessons learned are presented. Moving forward, test conclusions will require some design parameters to be changed and the subsystem will reach TRL 6 by the end of the two-year program
    • …
    corecore