4 research outputs found

    Molprint 2D-Based Identification and Synthesis of Novel Chromene Based Small Molecules that Target Pla2: Validation through Chemo-And Bioinformatics Approaches

    Get PDF
    Phospholipase A2 (PLA2) is known to regulate inflammation and hence it is considered as a validated drug-target by medicinal chemists. In this report, we have identified and considered a highly ranked ligand from the ZINC-drug-like compounds database that targets PLA2 via the MOLPRINT-2D based chemoinformatics drug-design approach. The computationally predicted lead molecule was found to contain a core moiety of a chromene ring, which is well known for its varied biological properties. Here, a novel and efficient retro-synthetic protocol for the synthesis of highly substituted chromene libraries was made. A one-pot synthesis of chromene was carried out using different aromatic primary alcohols, malononitrile and 4-hydroxy coumarin in the presence of a mild oxidant mixture called T3P®–DMSO, followed by a Suzuki coupling reaction to obtain the lead molecules. All of the tested compounds of the chromene series displayed inhibition of the venom PLA2 in the range of 12 to 68 μM. Among the tested compounds, 2-amino-4-(2′-methyl-[1,1′-biphenyl]-4-yl)-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitrile (7b) showed maximum inhibitory efficacy against venom PLA2 with an IC50 value of 12.5 μM. Furthermore, the designed PLA2 ligands bound to the active site of venom PLA2, whose binding affinity was comparable to nimesulide, indicating that the chromene moiety containing ligands could be novel lead-structures that serve as anti-inflammatory agents

    A one pot synthesis of novel bioactive tri- substitute-condensed-imidazopyridines that targets snake venom phospholipase A<inf>2</inf>

    Get PDF
    Drugs such as necopidem, saripidem, alpidem, zolpidem, and olprinone contain nitrogencontaining bicyclic, condensed-imidazo1,2-αpyridines as bioactive scaffolds. In this work, we report a high-yield one pot synthesis of 1-(2-methyl-8-aryl-substitued-imidazo1,2-α pyridin-3-yl)ethan-1-onefor the first-time. Subsequently, we performed in silico mode-ofaction analysis and predicted that the synthesized imidazopyridines targets Phospholipase A2 (PLA2). In vitro analysis confirmed the predicted target PLA2 for the novel imidazopyridine derivative1-(2-Methyl-8-naphthalen-1-yl-imidazo 1,2-αpyridine-3-yl)-ethanone (compound 3f) showing significant inhibitory activity towards snake venom PLA2 with an IC50 value of 14.3 μM. Evidently, the molecular docking analysis suggested that imidazopyridine compound was able to bind to the active site of the PLA2 with strong affinity, whose affinity values are comparable to nimesulide. Furthermore, we estimated the potential for oral bioavailability by Lipinski's Rule of Five. Hence, it is concluded that the compound 3f could be a lead molecule against snake venom PLA2. © 2015 Anilkumar et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Identification of a Molecularly-Defined Subset of Breast and Ovarian Cancer Models that Respond to WEE1 or ATR Inhibition, Overcoming PARP Inhibitor Resistance

    Get PDF
    PARP inhibitors (PARPi) induce synthetic lethality in homologous recombination repair (HRR)-deficient tumors and are used to treat breast, ovarian, pancreatic, and prostate cancers. Multiple PARPi resistance mechanisms exist, most resulting in restoration of HRR and protection of stalled replication forks. ATR inhibition was highlighted as a unique approach to reverse both aspects of resistance. Recently, however, a PARPi/WEE1 inhibitor (WEE1i) combination demonstrated enhanced antitumor activity associated with the induction of replication stress, suggesting another approach to tackling PARPi resistance. We analyzed breast and ovarian patientderived xenoimplant models resistant to PARPi to quantify WEE1i and ATR inhibitor (ATRi) responses as single agents and in combination with PARPi. Biomarker analysis was conducted at the genetic and protein level. Metabolite analysis by mass spectrometry and nucleoside rescue experiments ex vivo were also conducted in patient-derived models. Although WEE1i response was linked to markers of replication stress, including STK11/RB1 and phospho-RPA, ATRi response associated with ATM mutation. When combined with olaparib, WEE1i could be differentiated from the ATRi/olaparib combination, providing distinct therapeutic strategies to overcome PARPi resistance by targeting the replication stress response. Mechanistically, WEE1i sensitivity was associated with shortage of the dNTP pool and a concomitant increase in replication stress. Targeting the replication stress response is a valid therapeutic option to overcome PARPi resistance including tumors without an underlying HRR deficiency. These preclinical insights are now being tested in several clinical trials where the PARPi is administered with either the WEE1i or the ATRi
    corecore