275 research outputs found

    Pressure induced Raman and fluorescence singularities in LiYF4LiYF_4

    Full text link
    The pressure effect on the fluoride scheelite laser host LiYF4LiYF_4 is studied at room temperature up to 26 GPa by Raman scattering and up to 40 GPa by P3+P^{3+} fluorescence of doped sample. The Raman spectra exhibit three singularities at the vicinity of 6 GPa, 10-12 GPa and 16-17 GPa. The samples pressurized to 21 GPa or higher do not recover the original phase after being released, giving more Raman lines than original samples. The luminescence spectra of P3+P^{3+} are collected in the energy range corresponding to following transitions 3P0,1−−3H4,5,6^3P_{0,1}--^3H_{4,5,6}, 1D2−−3H4^1D_2--^3H_4 and 3P0−−3F2^3P_0--^3F_2. Singularities are observed in the vicinity of 6 GPa, 10 GPa, 16 GPa, 23 GPa in agreement with the Raman study. Moreover, an irreversible transition occurs at 23 GPa. The samples pressurized to above 26 GPa become amorphous when released and all the sharp lines disappear. Above 31 GPa, the spectra at high pressures show only some broad bands corresponding to transitions between two multiplets of the 4F2^4F_2 configuration of Pr3+Pr^{3+}. These singularities suggest possible phase transformations leading to lowering of the lattice symmetry.Comment: 12 pages, 13 figures, 2 table, LaTe

    Imaging isodensity contours of molecular states with STM

    Get PDF
    We present an improved way for imaging the local density of states with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (dII/dVV) constant. When archetypical C60_{60} molecules on Cu(111) are imaged with this method, these so-called iso-dII/dVV maps are in excellent agreement with theoretical simulations of the isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification of superatomic C60_{60} orbitals and their hybridization is then possible

    Lunar regolith as a feedstock for selective laser melting

    Get PDF
    Please click Additional Files below to see the full abstract

    Atomistic mechanisms for the ordered growth of Co nano-dots on Au(788): comparison of VT-STM experiments and multi-scaled calculations

    Get PDF
    Hetero-epitaxial growth on a strain-relief vicinal patterned substrate has revealed unprecedented 2D long range ordered growth of uniform cobalt nanostructures. The morphology of a Co sub-monolayer deposit on a Au(111) reconstructed vicinal surface is analyzed by Variable Temperature Scanning Tunneling Microscopy (VT-STM) experiments. A rectangular array of nano-dots (3.8 nm x 7.2 nm) is found for a particularly large deposit temperature range lying from 60 K to 300 K. Although the nanodot lattice is stable at room temperature, this paper focus on the early stage of ordered nucleation and growth at temperatures between 35 K and 480 K. The atomistic mechanisms leading to the nanodots array are elucidated by comparing statistical analysis of VT-STM images with multi-scaled numerical calculations combining both Molecular Dynamics for the quantitative determination of the activation energies for the atomic motion and the Kinetic Monte Carlo method for the simulations of the mesoscopic time and scale evolution of the Co submonolayer

    Pressure effects on the Raman spectrum of CaZnF4CaZnF_4

    Full text link
    The pressure influence on the lattice vibration of CaZnF4CaZnF_4 has been studied by Raman diffusion up to 17 GPa. Most Raman frequencies increase with increasing pressure. Three singularities in the pressure induced frequency evolution are observed around 1.5 GPa, 10 GPa and 17 GPa. The samples pressurized to 17 GPa or higher do not revert to the ambient pressure phase after being released, the new phase showing different Raman spectra from the ordinary one. It is suggested that CaZnF4CaZnF_4 undergoes probably sudden lattice deformations at about 1.5 GPa and 10 GPa, and an irreversible phase transformation above 17 GPa.Comment: LaTeX file, 3 ps figures, 8 page

    Revealing sub-{\mu}m inhomogeneities and {\mu}m-scale texture in H2O ice at Megabar pressures via sound velocity measurements by time-domain Brillouin scattering

    Full text link
    Time-domain Brillouin scattering technique, also known as picosecond ultrasonic interferometry, which provides opportunity to monitor propagation of nanometers to sub-micrometers length coherent acoustic pulses in the samples of sub-micrometers to tens of micrometers dimensions, was applied to depth-profiling of polycrystalline aggregate of ice compressed in a diamond anvil cell to Megabar pressures. The technique allowed examination of characteristic dimensions of elastic inhomogeneities and texturing of polycrystalline ice in the direction normal to the diamond anvil surfaces with sub-micrometer spatial resolution via time-resolved measurements of variations in the propagation velocity of the acoustic pulse traveling in the compressed sample. The achieved two-dimensional imaging of the polycrystalline ice aggregate in-depth and in one of the lateral directions indicates the feasibility of three-dimensional imaging and quantitative characterization of acoustical, optical and acousto-optical properties of transparent polycrystalline aggregates in diamond anvil cell with tens of nanometers in-depth resolution and lateral spatial resolution controlled by pump laser pulses focusing.Comment: 32 pages, 5 figure

    Functionalizing surfaces of 3D printed objects with an integrated low-cost atmospheric pressure micro plasma torch

    Get PDF
    Polymer 3D printing via the Fused Filament Fabrication (FFF) technology is a now well-known process designed to build three-dimensional objects from computer-aided-design (CAD) models in a layer-by-layer method. First dedicated for prototyping, this technology is now widely spread on the additive manufacturing (AM) and production market. With the decreasing costs of the equipment and materials needed as well as the growing simplicity of use and reliability of the technique, one can now have a 3D printer for the same cost and as user-friendly as a regular desktop inkjet printer. Among the commercially distributed thermoplastics, polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) are the two most outspread but one can also find acrylonitrile styrene acrylate (ASA), polyethylene terephthalate (PET) polycarbonate (PA) and much more. When assuming that single material 3D printed objects are obtained from growing layers in the (xy) plane stacked along the z axis, they are known to show really good tensile strength in the x and y direction but much less in the z direction due to insufficient interlayer bounding. Bigger problems arise when trying to print a multi-material object. Indeed, the chemical incompatibility of the different printed materials as well as their different thermal expansion coefficients are from the materials properties that can cause a very weak diffusion bonding at the interface. Authors started recently to focus on this problematic and very few studies can be found on the subject. To overcome the problem, we consider here improving the wettability of the printed polymer at the interface layer as it cause the extruded material to better spread over this layer, hence increasing the diffusion bonding. This work aims to investigate the effect of an atmospheric cold plasma treatment on the wettability and bonding of 3D printed objects. For this task, we designed an atmospheric pressure dielectric barrier discharge (DBD) plasma torch integrated on a commercial 3D printer. Thus, the device can be controlled to apply a plasma treatment while printing an object. As the deposition process will need to be done on complex surfaces and on thermal sensitive materials, a new type of high voltage nano-pulse generator had to be developed for this device. It gives the possibility to generate a homogeneous plasma (with less filament discharge) in a very small volume and a relatively extended plasma plume with a limitation of the gas temperature. Wettability measurements and tensile tests were carried out on 3D printed + plasma treated objects, obtained with our newly designed device. The material bonding is evaluated either within a single-material specimen by applying the treatment at the interlayers or within a multi-material one by treating only the interface layer of the two different materials.

    Pulling and Stretching a Molecular Wire to Tune its Conductance

    Full text link
    A scanning tunnelling microscope is used to pull a polythiophene wire from a Au(111) surface while measuring the current traversing the junction. Abrupt current increases measured during the lifting procedure are associated to the detachment of molecular sub-units, in apparent contradiction with the expected exponential decrease of the conductance with wire length. \textit{Ab initio} simulations reproduce the experimental data and demonstrate that this unexpected behavior is due to release of mechanical stress in the wire, paving the way to mechanically gated single-molecule electronic devices
    • …
    corecore