6 research outputs found

    EspM2 is a RhoA guanine nucleotide exchange factor

    Get PDF
    We investigated how the type III secretion system WxxxE effectors EspM2 of enterohaemorrhagic Escherichia coli, which triggers stress fibre formation, and SifA of Salmonella enterica serovar Typhimurium, which is involved in intracellular survival, modulate Rho GTPases. We identified a direct interaction between EspM2 or SifA and nucleotide‐free RhoA. Nuclear Magnetic Resonance Spectroscopy revealed that EspM2 has a similar fold to SifA and the guanine nucleotide exchange factor (GEF) effector SopE. EspM2 induced nucleotide exchange in RhoA but not in Rac1 or H‐Ras, while SifA induced nucleotide exchange in none of them. Mutating W70 of the WxxxE motif or L118 and I127 residues, which surround the catalytic loop, affected the stability of EspM2. Substitution of Q124, located within the catalytic loop of EspM2, with alanine, greatly attenuated the RhoA GEF activity in vitro and the ability of EspM2 to induce stress fibres upon ectopic expression. These results suggest that binding of SifA to RhoA does not trigger nucleotide exchange while EspM2 is a unique Rho GTPase GEF

    Modulation of host cell processes by T3SS effectors

    Get PDF
    Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection

    Secretion systems of pathogenic escherichia coli

    No full text
    Protein secretion plays a central role in modulating the interactions of bacteria with their environments. Bacterial ribosomes synthesize up to 8000 different proteins. Almost half of these become integrated in membranes and are secreted to the periplasm or to the external milieu. Many bacterial processes , such as DNA replication, motility, transport, antibiotic resistance, scavenging of chemicals, and pathogenesis, depend on protein secretion. Thereby, evolutionarily unrelated protein nanomachines have been developed, which allow exported proteins to cross the Gram-negative membranes. Bacterial proteins can be exported directly from the cytoplasm out of the cell by a one-step (cytoplasm to extracellular milieu), including the type I secretion system (T1SS), T3SS, T4SS, and T6SS, or two-step (periplasm translocation step), including the T2SS and T5SS, while the T4SS can use either the one- or two-step mechanism. The T3SS, T5SS, and T6SS are the more common secretion systems in Escherichia coli and most of the secreted substrates are virulence factors related to pathogenic E. coli . In this chapter, we will describe the main characteristic of these last three secretion systems.Inst. de BiotecnologíaFil: Navarro-García, Fernando. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados.Departamento de Biología Celular; MéxicoFil: Ruiz-Perez, Fernando. University of Virginia School of Medicine. Department of Pediatrics; Estados UnidosFil: Larzabal, Mariano. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Cataldi, Angel Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentin
    corecore