69 research outputs found

    Characteristics of the colorectal cancers diagnosed in the early 2000s in Italy. Figures from the IMPATTO study on colorectal cancer screening

    Get PDF
    The impact of organized screening programmes on colorectal cancer (CRC) can be observed at a population level only several years after the implementation of screening. We compared CRC characteristics by diagnostic modality (screen-detected, non-screen-detected) as an early outcome to monitor screening programme effectiveness. Data on CRCs diagnosed in Italy from 2000 to 2008 were collected by several cancer registries. Linkage with screening datasets made it possible to divide the cases by geographic area, implementation of screening, and modality of diagnosis (screen-detected, non-screen-detected).We compared the main characteristics of the different subgroups of CRCs through multivariate logistic regression models. The study included 23,668 CRCs diagnosed in subjects aged 50-69 years, of which 11.9%were screendetected (N=2,806), all from the North-Centre of Italy. Among screen-detected CRCs, we observed a higher proportion of males, of cases in the distal colon, and a higher mean age of the patients. Compared with pre-screening cases, screen-detected CRCs showed a better distribution by stage at diagnosis (OR for stage III or IV: 0.40, 95%CI: 0.36-0.44) and grading (OR for poorly differentiated CRCs was 0.86, 95%CI: 0.75-1.00). Screen-detected CRCs have more favourable prognostic characteristics than non-screen-detected cases. A renewed effort to implement screening programmes throughout the entire country is recommended

    The Engineering Knowledge Research Program

    Get PDF
    The engineering knowledge research program is part of the larger effort to articulate a philosophy of engineering and an engineering worldview. Engineering knowledge requires a more comprehensive conceptual framework than scientific knowledge. Engineering is not ‘merely’ applied science. Kuhn and Popper established the limits of scientific knowledge. In parallel, the embrace of complementarity and uncertainty in the new physics undermined the scientific concept of observer-independent knowledge. The paradigm shift from the scientific framework to the broader participant engineering framework entails a problem shift. The detached scientific spectator seeks the ‘facts’ of ‘objective’ reality – out there. The participant, embodied in reality, seeks ‘methods’, about how to work in the world. The engineering knowledge research program is recursively enabling. Advances in engineering knowledge are involved in the unfolding of the nature of reality. Newly understood, quantum uncertainty entails that the participant is a natural inquirer. ‘Practical reason’ is concerned with ‘how we should live’– the defining question of morality. The engineering knowledge research program is selective seeking ‘important truths’, ‘important knowledge’, ‘important methods’ that manifest value, and serve the engineering agenda of ‘the construction of the good.’ The importance of engineering knowledge research program is clear in the new STEM curriculum where educators have been challenged to rethink the relation between science and engineering. A 2015 higher education initiative to integrate engineering colleges into liberal arts and sciences colleges has stalled due to the confusion and conflict between the engineering and scientific representations of knowledge

    ITALIAN CANCER FIGURES - REPORT 2015: The burden of rare cancers in Italy = I TUMORI IN ITALIA - RAPPORTO 2015: I tumori rari in Italia

    Get PDF
    OBJECTIVES: This collaborative study, based on data collected by the network of Italian Cancer Registries (AIRTUM), describes the burden of rare cancers in Italy. Estimated number of new rare cancer cases yearly diagnosed (incidence), proportion of patients alive after diagnosis (survival), and estimated number of people still alive after a new cancer diagnosis (prevalence) are provided for about 200 different cancer entities. MATERIALS AND METHODS: Data herein presented were provided by AIRTUM population- based cancer registries (CRs), covering nowadays 52% of the Italian population. This monograph uses the AIRTUM database (January 2015), which includes all malignant cancer cases diagnosed between 1976 and 2010. All cases are coded according to the International Classification of Diseases for Oncology (ICD-O-3). Data underwent standard quality checks (described in the AIRTUM data management protocol) and were checked against rare-cancer specific quality indicators proposed and published by RARECARE and HAEMACARE (www.rarecarenet.eu; www.haemacare.eu). The definition and list of rare cancers proposed by the RARECAREnet "Information Network on Rare Cancers" project were adopted: rare cancers are entities (defined as a combination of topographical and morphological codes of the ICD-O-3) having an incidence rate of less than 6 per 100,000 per year in the European population. This monograph presents 198 rare cancers grouped in 14 major groups. Crude incidence rates were estimated as the number of all new cancers occurring in 2000-2010 divided by the overall population at risk, for males and females (also for gender-specific tumours).The proportion of rare cancers out of the total cancers (rare and common) by site was also calculated. Incidence rates by sex and age are reported. The expected number of new cases in 2015 in Italy was estimated assuming the incidence in Italy to be the same as in the AIRTUM area. One- and 5-year relative survival estimates of cases aged 0-99 years diagnosed between 2000 and 2008 in the AIRTUM database, and followed up to 31 December 2009, were calculated using complete cohort survival analysis. To estimate the observed prevalence in Italy, incidence and follow-up data from 11 CRs for the period 1992-2006 were used, with a prevalence index date of 1 January 2007. Observed prevalence in the general population was disentangled by time prior to the reference date (≤2 years, 2-5 years, ≤15 years). To calculate the complete prevalence proportion at 1 January 2007 in Italy, the 15-year observed prevalence was corrected by the completeness index, in order to account for those cancer survivors diagnosed before the cancer registry activity started. The completeness index by cancer and age was obtained by means of statistical regression models, using incidence and survival data available in the European RARECAREnet data. RESULTS: In total, 339,403 tumours were included in the incidence analysis. The annual incidence rate (IR) of all 198 rare cancers in the period 2000-2010 was 147 per 100,000 per year, corresponding to about 89,000 new diagnoses in Italy each year, accounting for 25% of all cancer. Five cancers, rare at European level, were not rare in Italy because their IR was higher than 6 per 100,000; these tumours were: diffuse large B-cell lymphoma and squamous cell carcinoma of larynx (whose IRs in Italy were 7 per 100,000), multiple myeloma (IR: 8 per 100,000), hepatocellular carcinoma (IR: 9 per 100,000) and carcinoma of thyroid gland (IR: 14 per 100,000). Among the remaining 193 rare cancers, more than two thirds (No. 139) had an annual IR <0.5 per 100,000, accounting for about 7,100 new cancers cases; for 25 cancer types, the IR ranged between 0.5 and 1 per 100,000, accounting for about 10,000 new diagnoses; while for 29 cancer types the IR was between 1 and 6 per 100,000, accounting for about 41,000 new cancer cases. Among all rare cancers diagnosed in Italy, 7% were rare haematological diseases (IR: 41 per 100,000), 18% were solid rare cancers. Among the latter, the rare epithelial tumours of the digestive system were the most common (23%, IR: 26 per 100,000), followed by epithelial tumours of head and neck (17%, IR: 19) and rare cancers of the female genital system (17%, IR: 17), endocrine tumours (13% including thyroid carcinomas and less than 1% with an IR of 0.4 excluding thyroid carcinomas), sarcomas (8%, IR: 9 per 100,000), central nervous system tumours and rare epithelial tumours of the thoracic cavity (5%with an IR equal to 6 and 5 per 100,000, respectively). The remaining (rare male genital tumours, IR: 4 per 100,000; tumours of eye, IR: 0.7 per 100,000; neuroendocrine tumours, IR: 4 per 100,000; embryonal tumours, IR: 0.4 per 100,000; rare skin tumours and malignant melanoma of mucosae, IR: 0.8 per 100,000) each constituted <4% of all solid rare cancers. Patients with rare cancers were on average younger than those with common cancers. Essentially, all childhood cancers were rare, while after age 40 years, the common cancers (breast, prostate, colon, rectum, and lung) became increasingly more frequent. For 254,821 rare cancers diagnosed in 2000-2008, 5-year RS was on average 55%, lower than the corresponding figures for patients with common cancers (68%). RS was lower for rare cancers than for common cancers at 1 year and continued to diverge up to 3 years, while the gap remained constant from 3 to 5 years after diagnosis. For rare and common cancers, survival decreased with increasing age. Five-year RS was similar and high for both rare and common cancers up to 54 years; it decreased with age, especially after 54 years, with the elderly (75+ years) having a 37% and 20% lower survival than those aged 55-64 years for rare and common cancers, respectively. We estimated that about 900,000 people were alive in Italy with a previous diagnosis of a rare cancer in 2010 (prevalence). The highest prevalence was observed for rare haematological diseases (278 per 100,000) and rare tumours of the female genital system (265 per 100,000). Very low prevalence (<10 prt 100,000) was observed for rare epithelial skin cancers, for rare epithelial tumours of the digestive system and rare epithelial tumours of the thoracic cavity. COMMENTS: One in four cancers cases diagnosed in Italy is a rare cancer, in agreement with estimates of 24% calculated in Europe overall. In Italy, the group of all rare cancers combined, include 5 cancer types with an IR>6 per 100,000 in Italy, in particular thyroid cancer (IR: 14 per 100,000).The exclusion of thyroid carcinoma from rare cancers reduces the proportion of them in Italy in 2010 to 22%. Differences in incidence across population can be due to the different distribution of risk factors (whether environmental, lifestyle, occupational, or genetic), heterogeneous diagnostic intensity activity, as well as different diagnostic capacity; moreover heterogeneity in accuracy of registration may determine some minor differences in the account of rare cancers. Rare cancers had worse prognosis than common cancers at 1, 3, and 5 years from diagnosis. Differences between rare and common cancers were small 1 year after diagnosis, but survival for rare cancers declined more markedly thereafter, consistent with the idea that treatments for rare cancers are less effective than those for common cancers. However, differences in stage at diagnosis could not be excluded, as 1- and 3-year RS for rare cancers was lower than the corresponding figures for common cancers. Moreover, rare cancers include many cancer entities with a bad prognosis (5-year RS <50%): cancer of head and neck, oesophagus, small intestine, ovary, brain, biliary tract, liver, pleura, multiple myeloma, acute myeloid and lymphatic leukaemia; in contrast, most common cancer cases are breast, prostate, and colorectal cancers, which have a good prognosis. The high prevalence observed for rare haematological diseases and rare tumours of the female genital system is due to their high incidence (the majority of haematological diseases are rare and gynaecological cancers added up to fairly high incidence rates) and relatively good prognosis. The low prevalence of rare epithelial tumours of the digestive system was due to the low survival rates of the majority of tumours included in this group (oesophagus, stomach, small intestine, pancreas, and liver), regardless of the high incidence rate of rare epithelial cancers of these sites. This AIRTUM study confirms that rare cancers are a major public health problem in Italy and provides quantitative estimations, for the first time in Italy, to a problem long known to exist. This monograph provides detailed epidemiologic indicators for almost 200 rare cancers, the majority of which (72%) are very rare (IR<0.5 per 100,000). These data are of major interest for different stakeholders. Health care planners can find useful information herein to properly plan and think of how to reorganise health care services. Researchers now have numbers to design clinical trials considering alternative study designs and statistical approaches. Population-based cancer registries with good quality data are the best source of information to describe the rare cancer burden in a population

    Fluid Mechanics Research in 1986

    No full text
    In 1965, a book was published with the title Research Frontiers in Fluid Dynamics, edited by Raymond Seeger and G. Temple. It was intended to give a panoramic view of some exciting vistas in fluid dynamics. It covered the following areas: (1) High-speed aerodynamics; (2) magnetophydrodynamics (MHD); (3) physics of fluids (low or high density, low or high temperature, etc); (4) constitutive properties of fluids (viscosity, viscoelasticity, etc.); (5) oceanography and meterology; (6) astrophysical and planetary fluid mechanics; and (7) mathematical aspects and numerical aspects. A few of these areas, such as MHD, have blossomed and faded away within a short decade. Some others, such as high-speed aerodynamics, have reached maturity and hope to keep their momentum. In the intervening years, we have witnessed that a number of fields in fluid mechanics have revived from their old times into a new life; still, some have emerged with brand new growth. For instance, the subject of long waves has had a colorful development, with the result of improving our understanding of at least seven different physical phenomena, though originally the solitary water wave was its home base. Low Reynolds number flows have again received new stimuli from many needed applications such as aerosol physics, two-phase flows, rheology, geophysics of the earth interior, as well as micro and molecular biology. Oil exploration has motivated various aspects of marine-related research and development, giving ever-increasing activities in ocean engineering. The energy program, a new glamorous field by its own importance, has brought forth investigations of fluid mechanical problems pertaining to nuclear, geothermal, solar, wind, ocean wave, and other forms of energy sources. Riding on the waves of these broad movements that have carried us thus far, we now hope to forecast the future of fluid mechanics research in 1986. We may like to put the focus at a slightly different depth and ask: What will be the most significant areas of fluid mechanics that by 1986 will enjoy the best prospects of vigorous development, most rewarding not only to the fluid dynamicist but also to mankind, and by then, still offer the expectation of longevity into the 1990's? The task is almost as hard as to make a prophecy on what the political world will be in 1986
    • …
    corecore