1 research outputs found
Modern and ancient amalgamated sandy meanderâbelt deposits: recognition and controls on development
Amalgamated sandy meander belts and their deposits are common in modern continental and marineâconnected basins yet comprise a minor constituent of the reported fluvial rock record. This suggests that either amalgamated meanderâbelts are uncommon in the rock record or that the recognition criteria are lacking to identify sandy meandering river deposits. To address this apparent discrepancy, the authors document the range and occurrence of amalgamated sandy meander belts (ASMB) from modern basins and the stratigraphic record. ASMB are widely distributed throughout both present and rock record sedimentary basins occurring in foreland, extensional, cratonic, strikeâslip and passive margin basins. They occur in all climatic settings ranging from tundra to hot deserts. Three specific occurrences of ASMB are recognised in modern basins: in the proximal to medial parts of distributive fluvial systems (DFS), as laterallyâconfined belts that mainly form axial fluvial systems; and as valleyâconfined meander belts that may infill bedrock, alluvial or coastal plain valleys. From the limited amount of rock record examples of ASMB that are available, it is clear that they occur in similar settings to those observed in modern basins, the recognition of which provides a framework for the further prediction and identification of ASMB in the rock record. The lack of recognition of ASMB in the rock record is considered to be due to an absence of characteristics that allow clear distinction between sandy meandering and braided fluvial deposits. Characteristics considered common to both include: multiâstorey, laterally extensive (sheetâlike) amalgamated channel belts, dominance of downstream accreting bedforms, no fining upwards grainâsize profile and little or no fineâgrained sediment and/or soil preservation. In contrast, features considered characteristic of meandering rivers such as inclined heterolithic stratification, high palaeocurrent dispersion, single storey channels and fining upwards grainâsize profiles are absent. The authors suggest that no single criterion can be used to definitively identify sandy meander belt deposits in the rock record and that a combination of systematic variations in accretion direction, palaeocurrent dispersal patterns and recognition of storey scale accretion surfaces is necessary to identify clearly this fluvial style. The common occurrence and distribution of sandy meander belts in modern sedimentary basins together with their limited recognition in the rock record suggests that their true stratigraphic distribution has yet to be determined. This has important implications for palaeogeographic reconstructions, understanding the impact of plant colonisation on fluvial planform style and predicting sandstone body dimensions and internal heterogeneity distribution within hydrocarbon reservoirs and aquifers