10 research outputs found

    Inflation in a modified radiative seesaw model

    Full text link
    The existence of the inflationary era in the early Universe seems to be strongly supported by recent CMB observations. However, only a few realistic inflation scenarios which have close relation to particle physics seem to have been known unfortunately. The radiative neutrino mass model with inert doublet dark matter is a promising model for the present experimental issues which cannot be explained within the standard model. In order to make the model include inflation, we extend it by a complex scalar field with a specific potential. This scalar could be closely related to the neutrino mass generation at a TeV scale as well as inflation. We show that the inflation favored by the CMB observations could be realized even if inflaton takes sub-Planck values during inflation.Comment: 20 pages, 3 figure

    Inflation due to a nonminimal coupling of singlet scalars in the radiative seesaw model

    Get PDF
    金沢大学理工研究域数物科学系The radiative neutrino mass model with inert doublet dark matter is a promising model for the present experimental issues which cannot be explained within the standard model. We study an extension of this model focusing on cosmological features brought about from the scalar sector. Inflation due to singlet scalars with hierarchical nonminimal couplings with the Ricci scalar may give a favorable solution for both neutrino masses and baryon number asymmetry in the Universe. © 2016 American Physical Society

    Inflation in a modified radiative seesaw model

    Get PDF
    金沢大学理工研究域数物科学系The existence of the inflationary era in the early Universe seems to be strongly supported by recent CMB observations. However, only a few realistic inflation scenarios which have close relation to particle physics seem to have been known unfortunately. The radiative neutrino mass model with inert doublet dark matter is a promising model for the present experimental issues which cannot be explained within the standard model. In order to make the model include inflation, we extend it by a complex scalar field with a specific potential. This scalar could be closely related to the neutrino mass generation at a TeV scale as well as inflation. We show that the inflation favored by the CMB observations could be realized even if inflaton takes sub-Planck values during inflation. © 2014 American Physical Society

    Inflation in a modified radiative seesaw model

    No full text
    corecore