25 research outputs found

    Cystoadaptometry in children with nephrolithiasis

    Get PDF
    In view of studying the function of the urinary bladder, at thirty nine children with ages between four and fifteen years old, diagnosed with urotiliasis, 39 (thirty nine) cystoadaptomerys were performed and in about 60% (sixty percent) of the cases bladder hypotony was found. In order to improve the treatment of the bladder hypotony, stimulant drugs of the urinary tract peristalsis, such as Neostigmina, Cerucal, Neiromedina, were added to the treatment, which showed satisfying results

    Kapazitäten und Induktivitäten als verzerrende Elemente

    No full text

    Effect of Nonmagnetic Hf Addition on Magnetic Properties of Melt-Spun Misch Metal-Fe-B Ribbons

    No full text
    Misch Metal (MM)-Fe-B magnets are proposed to develop permanent magnets with a high performance/cost ratio and to balance the disproportionate use of rare earth (RE) resources. To improve the magnetic performance of (MM)-Fe-B ribbons precursors of magnets, the addition of non-magnetic hafnium (Hf) was used. MM14Fe80−xHfxB6 (x = 0–3 at. %) ribbons were fabricated by melt-spinning technique at a wheel velocity of 35 m/s and were then annealed to obtain a nanocrystalline structure. The ribbons’ magnetic properties, morphology, and structure were investigated methodically. It was found that the coercivity, Hc, of the MM14Fe80−xHfxB6 (x = 0–3 at. %) as-spun ribbons increased significantly from 5.85 kOe to 9.25 kOe with an increase in the Hf content from 0 to 2 at. %, while the remanence decreased slightly for the whole 0–3 range at. % Hf. The grain size of the RE2Fe14B phase gradually decreased as the Hf addition content increased from 0 to 3 at. %. As a result, the best combination of magnetic properties, such as Hc = 9.25 kOe, Mr = 87 emu/g, and maximum energy product (BH)max = 9.75 MGOe, was obtained in the ribbons with 2 at. % Hf addition was annealed at an optimal temperature of 650 degrees Celsius for 20 min. This work can serve as a useful reference for the further development of a new permanent magnet based on MM and Hf elements and can provide a feasible way for the efficient use of rare earth resources
    corecore