39 research outputs found

    Production and characterization of spruce wood and bark biochar

    Get PDF
    Please click Additional Files below to see the full abstrac

    A re-analysis of NH4+ sorption on biochar: Have expectations been too high?

    Get PDF
    Sorption of nutrients such as NH4+ is often quoted as a critical property of biochar, explaining its value as a soil amendment and a filter material. However, published values for NH4+ sorption to biochar vary by more than 3 orders of magnitude, without consensus as to the source of this variability. This lack of understanding greatly limits our ability to use quantitative sorption measurements towards product design. Here, our objective was to conduct a quantitative analysis of the sources of variability, and infer which biochar traits are more favourable to high sorption capacity. To do so, we conducted a standardized remodelling exercise of published batch sorption studies using Langmuir sorption isotherm. We excluded studies presenting datasets that either could not be reconciled with the standard Langmuir sorption isotherm or generated clear outliers. Our analysis indicates that the magnitude of sorption capacity of unmodified biochar for NH4+ is lower than previously reported, with a median of 4.2 mg NH4+ g−1 and a maximum reported sorption capacity of 22.8 mg NH4+ g−1. Activation resulted in a significant relative improvement in sorption capacity, but absolute improvements remain modest, with a maximum reported sorption of 27.56 mg NH4+ g−1 for an activated biochar. Methodology appeared to substantially impact sorption estimates, especially practices such as pH control of batch sorption solution and ash removal. Our results highlight some significant challenges in the quantification of NH4+ sorption by biochar and our curated data set provides a potentially valuable scale against which future estimates can be assessed.publishedVersio

    Foredrag Øko2020, Tema Grønnsaker, Landbrukets Økologikongress 2020

    Get PDF
    Vi har samla slides fra foredraga holdt på Landbrukets Økologikonferanse 2020 under tema Grønnsaker på Øko2020 ble arrangert 21 - 22. januar. Hovedtema for konferansen var jord. PROGRAM Grønnsaker (ikke alle foredrag er publisert) Grønnsaker Slik dyrker jeg gulrot og kålvekster, Heinrich Jung, gardbruker i Solør Ugraskontroll, Thomas Holz, NLR Falskt såbed og organisk gjødsel, Mette Thomsen, NIBIO Blomsterremsor och andra åtgärder för att gynna nyttodjur och pollinerare i grönsaksodlingar i Sverige, Elisabeth Ögren, Jordbruksverket Potensialet med biokull i grønnsakspoduksjonen, Alice Budai, NIBIO Økologiske dyrkningssystemer til grønsagsproduktion med fokus på jordens mikrobielle aktivitet, kvælstof og rodvækst, Hanne Lakkenborg Kristensen, Århus Univeritet, Danmark Slik dyrker jeg potet, Halvor Midtsundstad, gardbruker i Solør Tidligpotet til lagring – en strategi for å redusere tørråte?Anne -Kristin Løes, NORSØ

    Muligheter for en mer effektiv utnytelse av planterestene - Agronomi som sikrer god jordhelse, avling og plantehelse i korn

    Get PDF
    Tap av organisk materiale, jordpakking og erosjon truer jordhelsa på kornareal. Problemer med dette vil antagelig øke i et våtere klima og medføre store kostnader for både gårdbrukere og samfunn. Fremover må vi passe på å stabilisere erosjonsutsatt jordoverflate og sikre en god infiltrasjon av nedbør. På kornareal er lav årlig tilførsel av karbon en begrensende faktor for aggregering og stabilisering, men dette kan forbedres ved å beholde halmen på jordet eller bruke en tilpasset fangvekststrategi. En bør trolig skjevfordele tilført organisk materiale mer mot jordas overflate og dermed stimulere mikrobiell aktivitet i jordas toppsjikt. Da må en minimere jordarbeidingsintensiteten. Slik redusert jordarbeiding fører også til utvikling av et kontinuerlig poresystem nedover i profilet som kan øke infiltrasjonen etter kraftige nedbørsepisoder og dermed bidra til å dempe flomtopper. Store mengder plantemateriale ved jordoverflaten gir imidlertid også noen utfordringer. Det trengs økt kunnskap om ugrasbekjempelse, spesielt i et scenario der glyfosat blir forbudt. Minimal jordarbeiding med planterester på jordoverflaten kan også øke angrep av sopp. Integrerte plantevernstrategier bør identifisere arter og sorter av matplanter og fangvekster som kan bidra til å begrense forekomst av patogener i jord og halmrester. Bedre jordhelse på kornareal er en tverrfaglig utfordring og krever en varig endring av dagens dyrkingspraksis.Muligheter for en mer effektiv utnytelse av planterestene - Agronomi som sikrer god jordhelse, avling og plantehelse i kornpublishedVersio

    Muligheter og utfordringer for økt karbonbinding i jordbruksjord

    Get PDF
    En økning i karbonlagring i landbruksjord er angitt som et viktig klimatiltak både internasjonalt og i Norge. Tiltaket er godt begrunnet: Jorden inneholder to til tre ganger så mye karbon som atmosfæren, noe som innebærer at relative små endringer i innhold av karbon i jord kan ha betydelige effekter på CO2-innholdet i atmosfæren og det globale klimaet. Det er godt dokumentert at intensive jordbruksmetoder har ført til en reduksjon i jordkarbon og derfor ønskes det en reversering av denne trenden (dvs. økt karbonbinding i jord), som tiltak både for klima og matproduksjon. I denne rapporten er det gjort vurderinger av hvordan dette kan gjøres i Norge og hvilken klimaeffekt som kan oppnås...publishedVersio

    Biochars in soils : towards the required level of scientific understanding

    Get PDF
    Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar's effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar's contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.Peer reviewe

    The effect of a biochar temperature series on denitrification: which biochar properties matter?

    Get PDF
    Biochar has been shown to reduce nitrous oxide (N2O) emissions from soils, but the effect is highly variable across studies and the mechanisms are under debate. To improve our mechanistic understanding of biochar effects on N2O emission, we monitored kinetics of NO, N2O and N2 accumulation in anoxic slurries of a peat and a mineral soil, spiked with nitrate and amended with feedstock dried at 105 °C and biochar produced at 372, 416, 562 and 796 °C at five different doses. Both soils accumulated consistently less N2O and NO in the presence of high-temperature chars (BC562 and BC796), which stimulated reduction of denitrification intermediates to N2, particularly in the acid peat. This effect appeared to be strongly linked to the degree of biochar carbonisation as predicted by the H:C ratio of the char. In addition, biochar surface area and pH were identified as important factors, whereas ash content and CEC played a minor role. At low pyrolysis temperature, the biochar effect was soil dependent, suppressing N2O accumulation in the mineral soil, but enhancing it in the peat soil. This contrast was likely due to the labile carbon content of low temperature chars, which contributed to immobilise N in the mineral soil, but stimulated denitrification and N2O emission in the peat soil. We conclude that biochar with a high degree of carbonisation, high pH and high surface area is best suited to supress N2O emission from denitrification, while low temperature chars risk supporting incomplete denitrification.publishedVersio

    Biochar persistence, priming and microbial responses to pyrolysis temperature series

    Get PDF
    Biochar and its properties can be significantly altered according to how it is produced, and this has ramifications towards how biochar behaves once added to soil. We produced biochars from corncob and miscanthus straw via different methods (slow pyrolysis, hydrothermal and flash carbonization) and temperatures to assess how carbon cycling and soil microbial communities were affected. Mineralization of biochar, its parent feedstock, and native soil organic matter were monitored using 13C natural abundance during a 1-year lab incubation. Bacterial and fungal community compositions were studied using T-RFLP and ARISA, respectively. We found that persistent biochar-C with a half-life 60 times higher than the parent feedstock can be achieved at pyrolysis temperatures of as low as 370 °C, with no further gains to be made at higher temperatures. Biochar re-applied to soil previously incubated with our highest temperature biochar mineralized faster than when applied to unamended soil. Positive priming of native SOC was observed for all amendments but subsided by the end of the incubation. Fungal and bacterial community composition of the soil-biochar mixture changed increasingly with the application of biochars produced at higher temperatures as compared to unamended soil. Those changes were significantly (P < 0.005) related to biochar properties (mainly pH and O/C) and thus were correlated to pyrolysis temperature. In conclusion, our results suggest that biochar produced at temperatures as low as 370 °C can be utilized to sequester C in soil for more than 100 years while having less impact on soil microbial activities than high-temperature biochars

    Co-composting of digestate and garden waste with biochar: effect on greenhouse gas production and fertilizer value of the matured compost

    Get PDF
    Biogas digestate is a nitrogen (N) rich waste product that has potential for application to soil as a fertilizer. Composting of digestate is recognized as an effective step to reduce potentially negative consequences of digestate application to soils. However, the structure of the digestate and the high N content can hinder effective composting. Biochar, which can be produced through the pyrolysis of waste biomass, has shown the potential to improve compost structure and increase N retention in soils. We studied how a high-temperature wood biochar affects the composting process, including greenhouse gas emissions, and the fertilizer value of the compost product including nutrient content, leachability and plant growth. The high Biochar dose (17% w/w) had a significantly positive effect on the maximum temperature (5°C increase vs. no biochar) and appeared to improve temperature stability during composting with less variability between replicates. Biochar addition reduced cumulative N2O emission by 65–70%, but had no significant effect on CO2 and CH4 emission. Biochar did not contribute to greater retention of nitrogen (N) contained in the digestate, but had a dilution effect on both N content and mineral nutrients. Fertilization with compost enhanced plant growth and nutrient retention in soil compared to mineral fertilization (NPK), but biochar had no additional effects on these parameters. Our results show that biochar improves the composting of digestate with no subsequent negative effects on plants.publishedVersio
    corecore