7,507 research outputs found

    Seed conservation in ex situ genebanks - genetic studies on longevity in barley

    Get PDF
    Recognizing the danger due to a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices, plant ex situ genebank collections were created since the beginning of the last century. World-wide more than 6 million accessions have been accumulated of which more than 90% are stored as seeds. Research on seed longevity was performed in barley maintained for up to 34 years in the seed store of the German ex situ genebank of the Leibniz-Institute of Plant Genetics and Crop Plant Research in Gatersleben. A high intraspecific variation was detected in those natural aged accessions. In addition three doubled haploid barley mapping populations being artificial aged were investigated to study the inheritance of seed longevity. Quantitative trait locus (QTL) mapping was based on a transcript map. Major QTLs were identified on chromosomes 2H, 5H (two) and 7H explaining a phenotypic variation of up to 54%. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs

    Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    Full text link
    Over the course of several decades, organic liquid scintillators have formed the basis for successful neutrino detectors. Gadolinium-loaded liquid scintillators provide efficient background suppression for electron antineutrino detection at nuclear reactor plants. In the Double Chooz reactor antineutrino experiment, a newly developed beta-diketonate gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization are described. A new, light yield matched metal-free companion scintillator is presented. Both organic liquids comprise the target and "Gamma Catcher" of the Double Chooz detectors.Comment: 16 pages, 4 figures, 5 table

    Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    Full text link
    Over the course of several decades, organic liquid scintillators have formed the basis for successful neutrino detectors. Gadolinium-loaded liquid scintillators provide efficient background suppression for electron antineutrino detection at nuclear reactor plants. In the Double Chooz reactor antineutrino experiment, a newly developed beta-diketonate gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization are described. A new, light yield matched metal-free companion scintillator is presented. Both organic liquids comprise the target and "Gamma Catcher" of the Double Chooz detectors.Comment: 16 pages, 4 figures, 5 table

    Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    Full text link
    Over the course of several decades, organic liquid scintillators have formed the basis for successful neutrino detectors. Gadolinium-loaded liquid scintillators provide efficient background suppression for electron antineutrino detection at nuclear reactor plants. In the Double Chooz reactor antineutrino experiment, a newly developed beta-diketonate gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization are described. A new, light yield matched metal-free companion scintillator is presented. Both organic liquids comprise the target and "Gamma Catcher" of the Double Chooz detectors.Comment: 16 pages, 4 figures, 5 table

    alpha-nucleus potentials for the neutron-deficient p nuclei

    Full text link
    alpha-nucleus potentials are one important ingredient for the understanding of the nucleosynthesis of heavy neutron-deficient p nuclei in the astrophysical gamma-process where these p nuclei are produced by a series of (gamma,n), (gamma,p), and (gamma,alpha) reactions. I present an improved alpha-nucleus potential at the astrophysically relevant sub-Coulomb energies which is derived from the analysis of alpha decay data and from a previously established systematic behavior of double-folding potentials.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.

    Pulse-coupled relaxation oscillators: from biological synchronization to Self-Organized Criticality

    Full text link
    It is shown that globally-coupled oscillators with pulse interaction can synchronize under broader conditions than widely believed from a theorem of Mirollo \& Strogatz \cite{MirolloII}. This behavior is stable against frozen disorder. Beside the relevance to biology, it is argued that synchronization in relaxation oscillator models is related to Self-Organized Criticality in Stick-Slip-like models.Comment: 4 pages, RevTeX, 1 uuencoded postscript figure in separate file, accepted for publication in Phys. Rev. Lett

    Simulation‐based optimization and experimental comparison of intracranial T2‐weighted DANTE‐SPACE vessel wall imaging at 3T and 7T

    Get PDF
    Purpose: T2‐weighted DANTE‐SPACE (Delay Alternating with Nutation for Tailored Excitation — Sampling Perfection with Application optimized Contrasts using different flip angle Evolution) sequences facilitate non‐invasive intracranial vessel wall imaging at 7T through simultaneous suppression of blood and CSF. However, the achieved vessel wall delineation depends closely on the selected sequence parameters, and little information is available about the performance of the sequence using more widely available 3T MRI. Therefore, in this paper a comprehensive DANTE‐SPACE simulation framework is used for the optimization and quantitative comparison of T2‐weighted DANTE‐SPACE at both 7T and 3T. Methods: Simulations are used to propose optimized sequence parameters at both 3T and 7T. At 7T, an additional protocol which uses a parallel transmission (pTx) shim during the DANTE preparation for improved suppression of inflowing blood is also proposed. Data at both field strengths using optimized and literature protocols are acquired and quantitatively compared in six healthy volunteers. Results: At 7T, more vessel wall signal can be retained while still achieving sufficient CSF suppression by using fewer DANTE pulses than described in previous implementations. The use of a pTx shim during DANTE at 7T provides a modest further improvement to the inner vessel wall delineation. At 3T, aggressive DANTE preparation is required to achieve CSF suppression, resulting in reduced vessel wall signal. As a result, the achievable vessel wall definition at 3T is around half that of 7T. Conclusion: Simulation‐based optimization of DANTE parameters facilitates improved T2‐weighted DANTE‐SPACE contrasts at 7T. The improved vessel definition of T2‐weighted DANTE‐SPACE at 7T makes DANTE preparation more suitable for T2‐weighted VWI at 7T than at 3T

    Optimization of Undersampling Parameters for 3D Intracranial Compressed Sensing MR Angiography at 7 Tesla

    Get PDF
    Purpose: 3D Time-of-flight (TOF) MR Angiography (MRA) can accurately visualize the intracranial vasculature, but is limited by long acquisition times. Compressed sensing (CS) reconstruction can be used to substantially accelerate acquisitions. The quality of those reconstructions depends on the undersampling patterns used in the acquisitions. In this work, optimized sets of undersampling parameters using various acceleration factors for Cartesian 3D TOF-MRA are established. Methods: Fully-sampled datasets acquired at 7T were retrospectively undersampled using variable-density Poisson-disk sampling with various autocalibration region sizes, polynomial orders, and acceleration factors. The accuracy of reconstructions from the different undersampled datasets was assessed using the vessel-masked structural similarity index. Results were compared for four imaging volumes, acquired from two different subjects. Optimized undersampling parameters were validated using additional prospectively undersampled datasets. Results: For all acceleration factors, using a fully-sampled calibration area of 12x12 k-space lines and a polynomial order of around 2-2.4 resulted in the highest image quality. The importance of sampling parameter optimization was found to increase for higher acceleration factors. The results were consistent across resolutions and regions of interest with vessels of varying sizes and tortuosity. In prospectively undersampled acquisitions, using optimized undersampling parameters resulted in a 7.2% increase in the number of visible small vessels at R = 7.2. Conclusion: The image quality of CS TOF-MRA can be improved by appropriate choice of undersampling parameters. The optimized sets of parameters are independent of the acceleration factor.Comment: Manuscript to be submitted to Magnetic Resonance in Medicin

    Dynamical systems with time-dependent coupling: Clustering and critical behaviour

    Full text link
    We study the collective behaviour of an ensemble of coupled motile elements whose interactions depend on time and are alternatively attractive or repulsive. The evolution of interactions is driven by individual internal variables with autonomous dynamics. The system exhibits different dynamical regimes, with various forms of collective organization, controlled by the range of interactions and the dispersion of time scales in the evolution of the internal variables. In the limit of large interaction ranges, it reduces to an ensemble of coupled identical phase oscillators and, to some extent, admits to be treated analytically. We find and characterize a transition between ordered and disordered states, mediated by a regime of dynamical clustering.Comment: to appear in Physica

    State-to-State Differential and Relative Integral Cross Sections for Rotationally Inelastic Scattering of H2O by Hydrogen

    Get PDF
    State-to-state differential cross sections (DCSs) for rotationally inelastic scattering of H2O by H2 have been measured at 71.2 meV (574 cm-1) and 44.8 meV (361 cm-1) collision energy using crossed molecular beams combined with velocity map imaging. A molecular beam containing variable compositions of the (J = 0, 1, 2) rotational states of hydrogen collides with a molecular beam of argon seeded with water vapor that is cooled by supersonic expansion to its lowest para or ortho rotational levels (JKaKc= 000 and 101, respectively). Angular speed distributions of fully specified rotationally excited final states are obtained using velocity map imaging. Relative integral cross sections are obtained by integrating the DCSs taken with the same experimental conditions. Experimental state-specific DCSs are compared with predictions from fully quantum scattering calculations on the most complete H2O-H2 potential energy surface. Comparison of relative total cross sections and state-specific DCSs show excellent agreement with theory in almost all detailsComment: 46 page
    • 

    corecore