6,201 research outputs found

    System-Size Effects on the Collective Dynamics of Cell Populations with Global Coupling

    Full text link
    Phase-transitionlike behavior is found to occur in globally coupled systems of finite number of elements, and its theoretical explanation is provided. The system studied is a population of globally pulse-coupled integrate-and-fire cells subject to small additive noise. As the population size is changed, the system shows a phase-transitionlike behavior. That is, there exits a well-defined critical system size above which the system stays in a monostable state with high-frequency activity while below which a new phase characterized by alternation of high- and low frequency activities appears. The mean field motion obeys a stochastic process with state-dependent noise, and the above phenomenon can be interpreted as a noise-induced transition characteristic to such processes. Coexistence of high- and low frequency activities observed in finite size systems is reported by N. Cohen, Y. Soen and E. Braun[Physica A249, 600 (1998)] in the experiments of cultivated heart cells. The present report gives the first qualitative interpretation of their experimental results

    Capsule-Based Dropwise Additive Manufacturing with Pharmaceutical Suspensions

    Get PDF
    Current manufacturing of pharmaceutical products focuses on creating a standard dosage of the active pharmaceutical ingredient (API); however, dosages often need to be altered or customized to account for a patient’s age, weight, comorbidity, and other genetic factors. A potential method for dispensing precise dosages of API suspensions through dropwise addition is detailed in the following paper. By using a drop-on-demand printing rig, a series of suspensions comprised of varying volume fractions of a micron-scale API in a carrier fluid were printed, and individual drop volumes were analyzed using high-resolution imaging. From this, capsules with 1 mg dosages and 100 mg dosages were manufactured. Completed trials yielded respective means of 1.043 mg and 99.946 mg of API being deposited across varying suspension compositions. The relative standard deviations of the 1 mg capsules averaged to be 1.51% and 0.30% for the 100 mg capsules. Further combinations of APIs and carrier fluids are continuing to be tested. The relative standard deviations of both dosage sizes are well under the 6% maximum variability imposed by the US Food and Drug Administration to regulate dosages of API, which provides evidence for the feasibility of printing pharmaceutical suspensions to create customized dosages for patient consumption

    A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks

    Full text link
    Among the many possible approaches for the parallelization of self-organizing networks, and in particular of growing self-organizing networks, perhaps the most common one is producing an optimized, parallel implementation of the standard sequential algorithms reported in the literature. In this paper we explore an alternative approach, based on a new algorithm variant specifically designed to match the features of the large-scale, fine-grained parallelism of GPUs, in which multiple input signals are processed at once. Comparative tests have been performed, using both parallel and sequential implementations of the new algorithm variant, in particular for a growing self-organizing network that reconstructs surfaces from point clouds. The experimental results show that this approach allows harnessing in a more effective way the intrinsic parallelism that the self-organizing networks algorithms seem intuitively to suggest, obtaining better performances even with networks of smaller size.Comment: 17 page

    Characterization of Knots and Links Arising From Site-specific Recombination on Twist Knots

    Full text link
    We develop a model characterizing all possible knots and links arising from recombination starting with a twist knot substrate, extending previous work of Buck and Flapan. We show that all knot or link products fall into three well-understood families of knots and links, and prove that given a positive integer nn, the number of product knots and links with minimal crossing number equal to nn grows proportionally to n5n^5. In the (common) case of twist knot substrates whose products have minimal crossing number one more than the substrate, we prove that the types of products are tightly prescribed. Finally, we give two simple examples to illustrate how this model can help determine previously uncharacterized experimental data.Comment: 32 pages, 7 tables, 27 figures, revised: figures re-arranged, and minor corrections. To appear in Journal of Physics

    Methane activation and exchange by titanium-carbon multiple bonds

    Get PDF
    We demonstrate that a titanium-carbon multiple bond, specifically an alkylidyne ligand in the transient complex, (PNP)Ti≡C^(t)Bu (A) (PNP^− = N[2-P(CHMe_2)_(2)-4-methylphenyl]_2), can cleanly activate methane at room temperature with moderately elevated pressures to form (PNP)Ti=CHtBu(CH_3). Isotopic labeling and theoretical studies suggest that the alkylidene and methyl hydrogens exchange, either via tautomerization invoking a methylidene complex, (PNP)Ti=CH_(2)(CH_(2)^(t)Bu), or by forming the methane adduct (PNP)Ti≡C^(t)Bu(CH_4). The thermal, fluxional and chemical behavior of (PNP)Ti=CH^(t)Bu(CH_3) is also presented in this study

    Does religion make a difference? : assessing the effects of Christian affiliation and practice on marital solidarity and divorce in Britain, 1985-2005

    Get PDF
    Marital breakdown rates were examined among 15,714 adults from the British Social Attitudes dataset for 1985-2005. Separation and divorce peaked at around 50 years of age, and increased significantly over the period of study. Ratios of separation or divorce were compared between respondents who had no religious affiliation and (a) Christian affiliates who attended church at least once a month, (b) Christian affiliates who attended church, but less than once a month, and (c) Christian affiliates who never attended church. The results showed that active Christians were 1.5 times less likely to suffer marital breakdown than non-affiliates, but there was no difference between affiliates who never attended church and those of no religion. Christians who attended infrequently were 1.3 times less likely to suffer marital breakdown compared to non-affiliates, suggesting that even infrequent attendance at church may have some significance for predicting the persistence of martial solidarity

    Physical demand but not dexterity is associated with motor flexibility during rapid reaching in healthy young adults

    Get PDF
    Healthy humans are able to place light and heavy objects in small and large target locations with remarkable accuracy. Here we examine how dexterity demand and physical demand affect flexibility in joint coordination and end-effector kinematics when healthy young adults perform an upper extremity reaching task. We manipulated dexterity demand by changing target size and physical demand by increasing external resistance to reaching. Uncontrolled manifold analysis was used to decompose variability in joint coordination patterns into variability stabilizing the end-effector and variability de-stabilizing the end-effector during reaching. Our results demonstrate a proportional increase in stabilizing and de-stabilizing variability without a change in the ratio of the two variability components as physical demands increase. We interpret this finding in the context of previous studies showing that sensorimotor noise increases with increasing physical demands. We propose that the larger de-stabilizing variability as a function of physical demand originated from larger sensorimotor noise in the neuromuscular system. The larger stabilizing variability with larger physical demands is a strategy employed by the neuromuscular system to counter the de-stabilizing variability so that performance stability is maintained. Our findings have practical implications for improving the effectiveness of movement therapy in a wide range of patient groups, maintaining upper extremity function in old adults, and for maximizing athletic performance

    Space construction system analysis. Part 2: Construction analysis

    Get PDF
    The construction methods specific to the end to end construction process for building the ETVP in low Earth orbit, using the space shuttle orbiter as a construction base, are analyzed. The analyses concerned three missions required to build the basic platform. The first mission involved performing the fabrication of beams in space and assembling the beams into a basic structural framework. The second mission was to install the forward support structure and aft support structure, the forward assembly, and a TT&C antenna. The third mission plan was to complete the construction of the platform and activate it to begin operations in low Earth orbit. The integration of the activities for each mission is described along with the construction requirements and construction logic

    Calculations of the Exclusive Processes 2H(e,e'p)n, 3He(e,e'p)2H and 3He(e,e'p)(pn) within a Generalized Glauber Approach

    Full text link
    The exclusive processes 2H(e,e'p)n, 3He(e,e'p)2H and 3He(e,e'p)(pn), have been analyzed using realistic few-body wave functions and treating the final state interaction (FSI) within a Generalized Eikonal Approximation (GEA), based upon the direct calculation of the Feynman diagrams describing the rescattering of the struck nucleon with the nucleons of the A-1 system. The approach represents an improvement of the conventional Glauber approach (GA), in that it allows one to take into account the effects of the nuclear excitation of the A−1A-1 system on the rescattering of the struck nucleon. Using realistic three-body wave functions corresponding to the AV18 interaction, the results of our parameter free calculations are compared with available experimental data. It is found that in some kinematical conditions FSI effects represent small corrections, whereas in other kinematics conditions they are very large and absolutely necessary to provide a satisfactory agreement between theoretical calculations and experimental data. It is shown that in the kinematics of the experimental data which have been considered, covering the region of missing momentum and energy with p_m < 0.6 GeV/c and E_m < 100 MeV in the perpendicular kinematics, the GA and GEA predictions differ only by less than 3-4 %.Comment: Typos detected and removed while Proof reading. Physical Review C. in Pres
    • …
    corecore