785 research outputs found
Approximating the Distribution of the Median and other Robust Estimators on Uncertain Data
Robust estimators, like the median of a point set, are important for data
analysis in the presence of outliers. We study robust estimators for
locationally uncertain points with discrete distributions. That is, each point
in a data set has a discrete probability distribution describing its location.
The probabilistic nature of uncertain data makes it challenging to compute such
estimators, since the true value of the estimator is now described by a
distribution rather than a single point. We show how to construct and estimate
the distribution of the median of a point set. Building the approximate support
of the distribution takes near-linear time, and assigning probability to that
support takes quadratic time. We also develop a general approximation technique
for distributions of robust estimators with respect to ranges with bounded VC
dimension. This includes the geometric median for high dimensions and the
Siegel estimator for linear regression.Comment: Full version of a paper to appear at SoCG 201
Four Soviets walk the dog, with an application to Alt's conjecture
Given two polygonal curves in the plane, there are several ways to define a measure of similarity between them. One measure that has been extremely popular in the past is the Frechet distance. Since it has been proposed by Alt and Godau in 1992, many variants and extensions have been described. However, even 20 years later, the original O(n^2 log n) algorithm by Alt and Godau for computing the Frechet distance remains the state of the art (here n denotes the number of vertices on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard. In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Frechet distance, where we consider sequences of points instead of polygonal curves. Building on their work, we give an algorithm to compute the Frechet distance between two polygonal curves in time O(n^2 (log n)^(1/2) (\log\log n)^(3/2)) on a pointer machine and in time O(n^2 (loglog n)^2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the Frechet problem of depth O(n^(2-epsilon)), for some epsilon > 0. This provides evidence that computing the Frechet distance may not be 3SUM-hard after all and reveals an intriguing new aspect of this well-studied problem
Finding long and similar parts of trajectories
A natural time-dependent similarity measure for two trajectories is their average distance at corresponding times. We give algorithms for computing the most similar subtrajectories under this measure, assuming the two trajectories are given as two polygonal, possibly self-intersecting lines. When a minimum duration is specified for the subtrajectories, and they must start at exactly corresponding times in the input trajectories, we give a linear-time algorithm for computing the starting time and duration of the most similar subtrajectories. The algorithm is based on a result of independent interest: We present a linear-time algorithm to find, for a piece-wise monotone function, an interval of at least a given length that has minimum average value. When the two subtrajectories can start at different times in the two input trajectories, it appears difficult to give an exact algorithm for the most similar subtrajectories problem, even if the duration of the desired two subtrajectories is fixed to some length. We show that the problem can be solved approximately, and with a performance guarantee. More precisely, we present (1 + e)-approximation algorithms for computing the most similar subtrajectories of two input trajectories for the case where the duration is specified, and also for the case where only a minimum on the duration is specified
Finding a minimum stretch of a function
Given a piecewise monotone function f : R ! R and a real value Tmin, we develop an algorithm that finds an interval of length at least Tmin for which the average value of f is minimized. The run-time of the algorithm is linear in the number of monotone pieces of f if certain operations are available in constant time for f. We use this algorithm to solve a basic problem arising in the analysis of trajectories: Finding the most similar subtrajectories of two given trajectories, provided that the duration is at least Tmin. Since the precise solution requires complex operations, we also give a simple (1+")approximation algorithm in which these operations are not needed
Model-based segmentation and classification of trajectories (Extended abstract)
We present efficient algorithms for segmenting and classifying a trajectory based on a parameterized movement model like the Brownian bridge movement model. Segmentation is the problem of subdividing a trajectory into parts such that each art is homogeneous in its movement characteristics. We formalize this using the likelihood of the model parameter. We consider the case where a discrete set of m parameter values is given and present an algorithm to compute an optimal segmentation with respect to an information criterion in O(nm) time for a trajectory with n sampling points. Classification is the problem of assigning trajectories to classes. We present an algorithm for discrete classification given a set of trajectories. Our algorithm computes the optimal classification with respect to an information criterion in O(m^2 + mk(log m + log k)) time for m parameter values and k trajectories, assuming bitonic likelihood functions
Four Soviets walk the dog, with an application to Alt's conjecture
Given two polygonal curves in the plane, there are many ways to define a notion of similarity between them. One measure that is extremely popular is the Fréchet distance. Since it has been proposed by Alt and Godau in 1992, many variants and extensions have been studied. Nonetheless, even more than 20 years later, the original O(n^2 log n) algorithm by Alt and Godau for computing the Fréchet distance remains the state of the art (here n denotes the number of vertices on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard.In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Fréchet distance, where one considers sequences of points instead of polygonal curves. Building on their work, we give a randomized algorithm to compute the Fréchet distance between two polygonal curves in time O(n^2 \sqrt log n (log log n)^{3/2}) on a pointer machine and in time O(n^2 (log log n)^2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the decision problem of depth O(n^{2¿}), for some ¿ > 0. This provides evidence that the decision problem may not be 3SUM-hard after all and reveals an intriguing new aspect of this well-studied problem
Fine-Grained Complexity Analysis of Two Classic TSP Variants
We analyze two classic variants of the Traveling Salesman Problem using the
toolkit of fine-grained complexity. Our first set of results is motivated by
the Bitonic TSP problem: given a set of points in the plane, compute a
shortest tour consisting of two monotone chains. It is a classic
dynamic-programming exercise to solve this problem in time. While the
near-quadratic dependency of similar dynamic programs for Longest Common
Subsequence and Discrete Frechet Distance has recently been proven to be
essentially optimal under the Strong Exponential Time Hypothesis, we show that
bitonic tours can be found in subquadratic time. More precisely, we present an
algorithm that solves bitonic TSP in time and its bottleneck
version in time. Our second set of results concerns the popular
-OPT heuristic for TSP in the graph setting. More precisely, we study the
-OPT decision problem, which asks whether a given tour can be improved by a
-OPT move that replaces edges in the tour by new edges. A simple
algorithm solves -OPT in time for fixed . For 2-OPT, this is
easily seen to be optimal. For we prove that an algorithm with a runtime
of the form exists if and only if All-Pairs
Shortest Paths in weighted digraphs has such an algorithm. The results for
may suggest that the actual time complexity of -OPT is
. We show that this is not the case, by presenting an algorithm
that finds the best -move in time for
fixed . This implies that 4-OPT can be solved in time,
matching the best-known algorithm for 3-OPT. Finally, we show how to beat the
quadratic barrier for in two important settings, namely for points in the
plane and when we want to solve 2-OPT repeatedly.Comment: Extended abstract appears in the Proceedings of the 43rd
International Colloquium on Automata, Languages, and Programming (ICALP 2016
Computing the Fréchet distance with shortcuts is NP-hard
We study the shortcut Fréchet distance, a natural variant of the Fréchet distance that allows us to take shortcuts from and to any point along one of the curves. We show that, surprisingly, the problem of computing the shortcut Fréchet distance exactly is NP-hard. Furthermore, we give a 3-approximation algorithm for the decision version of the problem
Constructing L∞ Voronoi diagrams in 2D and 3D
Voronoi diagrams and their computation are well known in the Euclidean L2 space. They are easy to sample and render in generalized Lp spaces but nontrivial to construct geometrically. Especially the limit of this norm with p → ∞ lends itself to many quad- and hex-meshing related applications as the level-set in this space is a hypercube. Many application scenarios circumvent the actual computation of L∞ diagrams altogether as known concepts for these diagrams are limited to 2D, uniformly weighted and axis-aligned sites. Our novel algorithm allows for the construction of generalized L∞ Voronoi diagrams. Although parts of the developed concept theoretically extend to higher dimensions it is herein presented and evaluated for the 2D and 3D case. It further supports individually oriented sites and allows for generating weighted diagrams with anisotropic weight vectors for individual sites. The algorithm is designed around individual sites, and initializes their cells with a simple meshed representation of a site's level-set. Hyperplanes between adjacent cells cut the initialization geometry into convex polyhedra. Non-cell geometry is filtered out based on the L∞ Voronoi criterion, leaving only the non-convex cell geometry. Eventually we conclude with discussions on the algorithms complexity, numerical precision and analyze the applicability of our generalized L∞ diagrams for the construction of Centroidal Voronoi Tessellations (CVT) using Lloyd's algorithm
Computing the Fréchet Distance with a Retractable Leash
All known algorithms for the Fréchet distance between curves proceed in two steps: first, they construct an efficient oracle for the decision version; second, they use this oracle to find the optimum from a finite set of critical values. We present a novel approach that avoids the detour through the decision version. This gives the first quadratic time algorithm for the Fréchet distance between polygonal curves in (Formula presented.) under polyhedral distance functions (e.g., (Formula presented.) and (Formula presented.)). We also get a (Formula presented.)-approximation of the Fréchet distance under the Euclidean metric, in quadratic time for any fixed (Formula presented.). For the exact Euclidean case, our framework currently yields an algorithm with running time (Formula presented.). However, we conjecture that it may eventually lead to a faster exact algorithm
- …