4 research outputs found

    Polarisation dynamics in ferroelectric materials.

    Get PDF
    Ferroelectric materials have established themselves as indispensable in key applications such as piezoelectric transducers and energy storage devices. While the use of ferroelectrics in these fields dates back more than 50 years, little progress has been made to extend applications of ferroelectrics into new fields. To a large extend the observed slow progress is not caused by a lack of potential applications, but to by the inherent complexity associated with a structural phase transition, combined with strong coupling of polarisation, strain and temperature, and the strong modification of the phenomena by material defects. This thesis takes a look at prospective applications in energy storage for pulse power applications, solid state cooling and non-volatile random access memory and identifies key issues that need to be resolved. The thesis delivers time-domain based approaches to determine ferroelectric switching behaviour of bulk materials and thin films down to sub-ns time scales. The approach permitted study of how information written to a ferroelectric memory decays as a result of multiple non-destructive read operations. Furthermore simultaneous direct measurements of temperature and ferroelectric switching established a direct link between the retarded switching phenomenon observed in ferroelectrics and temperature changes brought by the electrocaloric effect. By comparison with analytical models and numerical simulation a large localised temperature change on the scale of individual domains is postulated. It implies a much larger coupling between switching and local temperature than has been previously considered. In extension of the model the frequency dependence of polarisation fatigue under bipolar conditions is explained by the occurrence of large temperature gradients in the material

    Electrocaloric induced retarded ferroelectric switching

    No full text
    Ferroelectric switching in bulk materials, at modest electric fields, is a relatively fast process, occurring on time scales of microseconds and less. A secondary retarded switching phenomenon also occurs on time scales of seconds and has previously been attributed to defect induced elevated energy barriers between polarisation states. As ferroelectric switching is a thermally activated process the barrier heights are also affected by temperature which is not constant in ferroelectric materials due to the electrocaloric effect. Here an additional EC induced retardation mechanism is proposed whereby EC induced temperature changes repeatedly temporarily prevent further FE switching during cooling cycles

    Antibody 10-1074 suppresses viremia in HIV-1-infected individuals

    No full text
    Monoclonal antibody 10-1074 targets the V3 glycan supersite on the HIV-1 envelope (Env) protein. It is among the most potent anti-HIV-1 neutralizing antibodies isolated so far. Here we report on its safety and activity in 33 individuals who received a single intravenous infusion of the antibody. 10-1074 was well tolerated and had a half-life of 24.0 d in participants without HIV-1 infection and 12.8 d in individuals with HIV-1 infection. Thirteen individuals with viremia received the highest dose of 30 mg/kg 10-1074. Eleven of these participants were 10-1074-sensitive and showed a rapid decline in viremia by a mean of 1.52 logic copies/ml. Virologic analysis revealed the emergence of multiple independent 10-1074-resistant viruses in the first weeks after infusion. Emerging escape variants were generally resistant to the related V3-specific antibody PGT121, but remained sensitive to antibodies targeting nonoverlapping epitopes, such as the anti-CD4-binding-site antibodies 3BNC117 and VRC01. The results demonstrate the safety and activity of 10-1074 in humans and support the idea that antibodies targeting the V3 glycan supersite might be useful for the treatment and prevention of HIV-1 infection
    corecore