275 research outputs found
Establishing the entatic state in folding metallated Pseudomonas aeruginosa azurin
Understanding how the folding of proteins establishes their functional characteristics at the molecular level challenges both theorists and experimentalists. The simplest test beds for confronting this issue are provided by electron transfer proteins. The environment provided by the folded protein to the cofactor tunes the metal's electron transport capabilities as envisioned in the entatic hypothesis. To see how the entatic state is achieved one must study how the folding landscape affects and in turn is affected by the metal. Here, we develop a coarse-grained functional to explicitly model how the coordination of the metal (which results in a so-called entatic or rack-induced state) modifies the folding of the metallated Pseudomonas aeruginosa azurin. Our free-energy functional-based approach directly yields the proper nonlinear extra-thermodynamic free energy relationships for the kinetics of folding the wild type and several point-mutated variants of the metallated protein. The results agree quite well with corresponding laboratory experiments. Moreover, our modified free-energy functional provides a sufficient level of detail to explicitly model how the geometric entatic state of the metal modifies the dynamic folding nucleus of azurin
Detection of a Light Echo from the Otherwise Normal SN 2007af
We present the discovery of a light echo from SN 2007af, a normal Type Ia
supernova (SN Ia) in NGC 5584. Hubble Space Telescope (HST) images taken three
years post explosion reveal two separate echoes; an outer echo and extended
central region, which we propose as an unresolved inner echo. Multiple images
were obtained in the F160W, F350LP, F555W, and F814W using the Wide Field
Camera 3. If the outer echo is produced by an interstellar dust sheet
perpendicular to the line of sight, it is located ~800 pc in front of the SN.
The dust for the inner echo is 0.45 pc < d < 90 pc away from the SN. The inner
echo color is consistent with typical interstellar dust wavelength-dependent
scattering cross-sections, while the outer echo color does not match the
predictions. Both dust sheets, if in the foreground, are optically thin for
scattering, with the outer echo sheet thickness consistent with the inferred
extinction from peak brightness. Whether the inner echo is from interstellar or
circumstellar dust is ambiguous. Overall, the echo characteristics are quite
similar to previously observed SN Ia echoes.Comment: 15 pages, 6 figures, 7 table
Simple models of protein folding and of non--conventional drug design
While all the information required for the folding of a protein is contained
in its amino acid sequence, one has not yet learned how to extract this
information to predict the three--dimensional, biologically active, native
conformation of a protein whose sequence is known. Using insight obtained from
simple model simulations of the folding of proteins, in particular of the fact
that this phenomenon is essentially controlled by conserved (native) contacts
among (few) strongly interacting ("hot"), as a rule hydrophobic, amino acids,
which also stabilize local elementary structures (LES, hidden, incipient
secondary structures like --helices and --sheets) formed early
in the folding process and leading to the postcritical folding nucleus (i.e.,
the minimum set of native contacts which bring the system pass beyond the
highest free--energy barrier found in the whole folding process) it is possible
to work out a succesful strategy for reading the native structure of designed
proteins from the knowledge of only their amino acid sequence and of the
contact energies among the amino acids. Because LES have undergone millions of
years of evolution to selectively dock to their complementary structures, small
peptides made out of the same amino acids as the LES are expected to
selectively attach to the newly expressed (unfolded) protein and inhibit its
folding, or to the native (fluctuating) native conformation and denaturate it.
These peptides, or their mimetic molecules, can thus be used as effective
non--conventional drugs to those already existing (and directed at neutralizing
the active site of enzymes), displaying the advantage of not suffering from the
uprise of resistance
Role of Secondary Motifs in Fast Folding Polymers: A Dynamical Variational Principle
A fascinating and open question challenging biochemistry, physics and even
geometry is the presence of highly regular motifs such as alpha-helices in the
folded state of biopolymers and proteins. Stimulating explanations ranging from
chemical propensity to simple geometrical reasoning have been invoked to
rationalize the existence of such secondary structures. We formulate a
dynamical variational principle for selection in conformation space based on
the requirement that the backbone of the native state of biologically viable
polymers be rapidly accessible from the denatured state. The variational
principle is shown to result in the emergence of helical order in compact
structures.Comment: 4 pages, RevTex, 4 eps figure
Folding, Design and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers
We present the results of a self-consistent, unified molecular dynamics study
of simple model heteropolymers in the continuum with emphasis on folding,
sequence design and the determination of the interaction parameters of the
effective potential between the amino acids from the knowledge of the native
states of the designed sequences.Comment: 8 pages, 3 Postscript figures, uses RevTeX. Submitted to Physical
Review Letter
An Analytical Approach to the Protein Designability Problem
We present an analytical method for determining the designability of protein
structures. We apply our method to the case of two-dimensional lattice
structures, and give a systematic solution for the spectrum of any structure.
Using this spectrum, the designability of a structure can be estimated. We
outline a heirarchy of structures, from most to least designable, and show that
this heirarchy depends on the potential that is used.Comment: 16 pages 4 figure
Finite size effects on thermal denaturation of globular proteins
Finite size effects on the cooperative thermal denaturation of proteins are
considered. A dimensionless measure of cooperativity, Omega, scales as N^zeta,
where N is the number of amino acids. Surprisingly, we find that zeta is
universal with zeta = 1 + gamma, where the exponent gamma characterizes the
divergence of the susceptibility for a self-avoiding walk. Our lattice model
simulations and experimental data are consistent with the theory. Our finding
rationalizes the marginal stability of proteins and substantiates the earlier
predictions that the efficient folding of two-state proteins requires the
folding transition temperature to be close to the collapse temperature.Comment: 3 figures. Physical Review Letters (in press
Protein structures and optimal folding emerging from a geometrical variational principle
Novel numerical techniques, validated by an analysis of barnase and
chymotrypsin inhibitor, are used to elucidate the paramount role played by the
geometry of the protein backbone in steering the folding to the correct native
state. It is found that, irrespective of the sequence, the native state of a
protein has exceedingly large number of conformations with a given amount of
structural overlap compared to other compact artificial backbones; moreover the
conformational entropies of unrelated proteins of the same length are nearly
equal at any given stage of folding. These results are suggestive of an
extremality principle underlying protein evolution, which, in turn, is shown to
be associated with the emergence of secondary structures.Comment: Revtex, 5 pages, 5 postscript figure
Viscosity Dependence of the Folding Rates of Proteins
The viscosity dependence of the folding rates for four sequences (the native
state of three sequences is a beta-sheet, while the fourth forms an
alpha-helix) is calculated for off-lattice models of proteins. Assuming that
the dynamics is given by the Langevin equation we show that the folding rates
increase linearly at low viscosities \eta, decrease as 1/\eta at large \eta and
have a maximum at intermediate values. The Kramers theory of barrier crossing
provides a quantitative fit of the numerical results. By mapping the simulation
results to real proteins we estimate that for optimized sequences the time
scale for forming a four turn \alpha-helix topology is about 500 nanoseconds,
whereas the time scale for forming a beta-sheet topology is about 10
microseconds.Comment: 14 pages, Latex, 3 figures. One figure is also available at
http://www.glue.umd.edu/~klimov/seq_I_H.html, to be published in Physical
Review Letter
Deriving amino acid contact potentials from their frequencies of occurence in proteins: a lattice model study
The possibility of deriving the contact potentials between amino acids from
their frequencies of occurence in proteins is discussed in evolutionary terms.
This approach allows the use of traditional thermodynamics to describe such
frequencies and, consequently, to develop a strategy to include in the
calculations correlations due to the spatial proximity of the amino acids and
to their overall tendency of being conserved in proteins. Making use of a
lattice model to describe protein chains and defining a "true" potential, we
test these strategies by selecting a database of folding model sequences,
deriving the contact potentials from such sequences and comparing them with the
"true" potential. Taking into account correlations allows for a markedly better
prediction of the interaction potentials
- …