179 research outputs found

    Characterization of two-qubit perfect entanglers

    Full text link
    Here we consider perfect entanglers from another perspective. It is shown that there are some {\em special} perfect entanglers which can maximally entangle a {\em full} product basis. We have explicitly constructed a one-parameter family of such entanglers together with the proper product basis that they maximally entangle. This special family of perfect entanglers contains some well-known operators such as {\textsc{cnot}} and {\textsc{dcnot}}, but {\em not} {\small{\sqrt{\rm{\textsc{swap}}}}}. In addition, it is shown that all perfect entanglers with entangling power equal to the maximal value, 2/9, are also special perfect entanglers. It is proved that the one-parameter family is the only possible set of special perfect entanglers. Also we provide an analytic way to implement any arbitrary two-qubit gate, given a proper special perfect entangler supplemented with single-qubit gates. Such these gates are shown to provide a minimum universal gate construction in that just two of them are necessary and sufficient in implementation of a generic two-qubit gate.Comment: 6 pages, 1 eps figur

    Minimum orbit dimension for local unitary action on n-qubit pure states

    Full text link
    The group of local unitary transformations partitions the space of n-qubit quantum states into orbits, each of which is a differentiable manifold of some dimension. We prove that all orbits of the n-qubit quantum state space have dimension greater than or equal to 3n/2 for n even and greater than or equal to (3n + 1)/2 for n odd. This lower bound on orbit dimension is sharp, since n-qubit states composed of products of singlets achieve these lowest orbit dimensions.Comment: 19 page

    Pocket2Drug: An Encoder-Decoder Deep Neural Network For The Target-Based Drug Design

    Get PDF
    Computational modeling is an essential component of modern drug discovery. One of its most important applications is to select promising drug candidates for pharmacologically relevant target proteins. Because of continuing advances in structural biology, putative binding sites for small organic molecules are being discovered in numerous proteins linked to various diseases. These valuable data offer new opportunities to build efficient computational models predicting binding molecules for target sites through the application of data mining and machine learning. In particular, deep neural networks are powerful techniques capable of learning from complex data in order to make informed drug binding predictions. In this communication, we describe Pocket2Drug, a deep graph neural network model to predict binding molecules for a given a ligand binding site. This approach first learns the conditional probability distribution of small molecules from a large dataset of pocket structures with supervised training, followed by the sampling of drug candidates from the trained model. Comprehensive benchmarking simulations show that using Pocket2Drug significantly improves the chances of finding molecules binding to target pockets compared to traditional drug selection procedures. Specifically, known binders are generated for as many as 80.5% of targets present in the testing set consisting of dissimilar data from that used to train the deep graph neural network model. Overall, Pocket2Drug is a promising computational approach to inform the discovery of novel biopharmaceuticals

    Higher dimensional abelian Chern-Simons theories and their link invariants

    Full text link
    The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions 4l+34l+3, whose parameter kk is quantized. The generalized Wilson (2l+1)(2l+1)-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of (2l+1)(2l+1)-loops, first on closed (4l+3)(4l+3)-manifolds through a novel geometric computation, then on R4l+3\mathbb{R}^{4l+3} through an unconventional field theoretic computation.Comment: 40 page

    Quantum circuits with uniformly controlled one-qubit gates

    Full text link
    Uniformly controlled one-qubit gates are quantum gates which can be represented as direct sums of two-dimensional unitary operators acting on a single qubit. We present a quantum gate array which implements any n-qubit gate of this type using at most 2^{n-1} - 1 controlled-NOT gates, 2^{n-1} one-qubit gates and a single diagonal n-qubit gate. The circuit is based on the so-called quantum multiplexor, for which we provide a modified construction. We illustrate the versatility of these gates by applying them to the decomposition of a general n-qubit gate and a local state preparation procedure. Moreover, we study their implementation using only nearest-neighbor gates. We give upper bounds for the one-qubit and controlled-NOT gate counts for all the aforementioned applications. In all four cases, the proposed circuit topologies either improve on or achieve the previously reported upper bounds for the gate counts. Thus, they provide the most efficient method for general gate decompositions currently known.Comment: 8 pages, 10 figures. v2 has simpler notation and sharpens some result

    Valence bond solid formalism for d-level one-way quantum computation

    Full text link
    The d-level or qudit one-way quantum computer (d1WQC) is described using the valence bond solid formalism and the generalised Pauli group. This formalism provides a transparent means of deriving measurement patterns for the implementation of quantum gates in the computational model. We introduce a new universal set of qudit gates and use it to give a constructive proof of the universality of d1WQC. We characterise the set of gates that can be performed in one parallel time step in this model.Comment: 26 pages, 9 figures. Published in Journal of Physics A: Mathematical and Genera

    A practical scheme for quantum computation with any two-qubit entangling gate

    Get PDF
    Which gates are universal for quantum computation? Although it is well known that certain gates on two-level quantum systems (qubits), such as the controlled-not (CNOT), are universal when assisted by arbitrary one-qubit gates, it has only recently become clear precisely what class of two-qubit gates is universal in this sense. Here we present an elementary proof that any entangling two-qubit gate is universal for quantum computation, when assisted by one-qubit gates. A proof of this important result for systems of arbitrary finite dimension has been provided by J. L. and R. Brylinski [arXiv:quant-ph/0108062, 2001]; however, their proof relies upon a long argument using advanced mathematics. In contrast, our proof provides a simple constructive procedure which is close to optimal and experimentally practical [C. M. Dawson and A. Gilchrist, online implementation of the procedure described herein (2002), http://www.physics.uq.edu.au/gqc/].Comment: 3 pages, online implementation of procedure described can be found at http://www.physics.uq.edu.au/gqc

    Resolution of null fiber and conormal bundles on the Lagrangian Grassmannian

    Full text link
    We study the null fiber of a moment map related to dual pairs. We construct an equivariant resolution of singularities of the null fiber, and get conormal bundles of closed KC K_C -orbits in the Lagrangian Grassmannian as the categorical quotient. The conormal bundles thus obtained turn out to be a resolution of singularities of the closure of nilpotent KC K_C -orbits, which is a "quotient" of the resolution of the null fiber.Comment: 17 pages; completely revised and add reference

    An Invitation to Higher Gauge Theory

    Get PDF
    In this easy introduction to higher gauge theory, we describe parallel transport for particles and strings in terms of 2-connections on 2-bundles. Just as ordinary gauge theory involves a gauge group, this generalization involves a gauge '2-group'. We focus on 6 examples. First, every abelian Lie group gives a Lie 2-group; the case of U(1) yields the theory of U(1) gerbes, which play an important role in string theory and multisymplectic geometry. Second, every group representation gives a Lie 2-group; the representation of the Lorentz group on 4d Minkowski spacetime gives the Poincar\'e 2-group, which leads to a spin foam model for Minkowski spacetime. Third, taking the adjoint representation of any Lie group on its own Lie algebra gives a 'tangent 2-group', which serves as a gauge 2-group in 4d BF theory, which has topological gravity as a special case. Fourth, every Lie group has an 'inner automorphism 2-group', which serves as the gauge group in 4d BF theory with cosmological constant term. Fifth, every Lie group has an 'automorphism 2-group', which plays an important role in the theory of nonabelian gerbes. And sixth, every compact simple Lie group gives a 'string 2-group'. We also touch upon higher structures such as the 'gravity 3-group' and the Lie 3-superalgebra that governs 11-dimensional supergravity.Comment: 60 pages, based on lectures at the 2nd School and Workshop on Quantum Gravity and Quantum Geometry at the 2009 Corfu Summer Institut

    Cavity QED and Quantum Computation in the Weak Coupling Regime

    Full text link
    In this paper we consider a model of quantum computation based on n atoms of laser-cooled and trapped linearly in a cavity and realize it as the n atoms Tavis-Cummings Hamiltonian interacting with n external (laser) fields. We solve the Schr{\" o}dinger equation of the model in the case of n=2 and construct the controlled NOT gate by making use of a resonance condition and rotating wave approximation associated to it. Our method is not heuristic but completely mathematical, and the significant feature is a consistent use of Rabi oscillations. We also present an idea of the construction of three controlled NOT gates in the case of n=3 which gives the controlled-controlled NOT gate.Comment: Latex file, 22 pages, revised version. To appear in Journal of Optics B : Quantum and Semiclassical Optic
    • …
    corecore