184 research outputs found

    Analysis of lesion localisation at colonoscopy: outcomes from a multi-centre U.K. study

    Get PDF
    Background: Colonoscopy is currently the gold standard for detection of colorectal lesions, but may be limited in anatomically localising lesions. This audit aimed to determine the accuracy of colonoscopy lesion localisation, any subsequent changes in surgical management and any potentially influencing factors. Methods: Patients undergoing colonoscopy prior to elective curative surgery for colorectal lesion/s were included from 8 registered U.K. sites (2012–2014). Three sets of data were recorded: patient factors (age, sex, BMI, screener vs. symptomatic, previous abdominal surgery); colonoscopy factors (caecal intubation, scope guide used, colonoscopist accreditation) and imaging modality. Lesion localisation was standardised with intra-operative location taken as the gold standard. Changes to surgical management were recorded. Results: 364 cases were included; majority of lesions were colonic, solitary, malignant and in symptomatic referrals. 82% patients had their lesion/s correctly located at colonoscopy. Pre-operative CT visualised lesion/s in only 73% of cases with a reduction in screening patients (64 vs. 77%; p = 0.008). 5.2% incorrectly located cases at colonoscopy underwent altered surgical management, including conversion to open. Univariate analysis found colonoscopy accreditation, scope guide use, incomplete colonoscopy and previous abdominal surgery significantly influenced lesion localisation. On multi-variate analysis, caecal intubation and scope guide use remained significant (HR 0.35, 0.20–0.60 95% CI and 0.47; 0.25–0.88, respectively). Conclusion: Lesion localisation at colonoscopy is incorrect in 18% of cases leading to potentially significant surgical management alterations. As part of accreditation, colonoscopists need lesion localisation training and awareness of when inaccuracies can occur

    Historical Pathways for Opioid Addiction, Withdrawal with Traditional and Alternative Treatment Options with Ketamine, Cannabinoids, and Noribogaine: A Narrative Review

    Get PDF
    Even as prescription opioid dispensing rates have begun to decrease, the use of illicit opioids such as heroin and fentanyl has increased. Thus, the end of the opioid epidemic is not in sight, and treating patients that are addicted to opioids remains of utmost importance. Currently, the primary pharmacotherapies used to treat opioid addiction over the long term are the opioid antagonist naltrexone, the partial-agonist buprenorphine, and the full agonist methadone. Naloxone is an antagonist used to rapidly reverse opioid overdose. While these treatments are well-established and used regularly, the gravity of the opioid epidemic necessitates that all possible avenues of treatment be explored. Therefore, in this narrative review, we analyze current literature regarding use of the alternative medications ketamine, noribogaine, and cannabinoids in treating patients suffering from opioid use disorder. Beyond its use as an anesthetic, ketamine has been shown to have many applications in several medical specialties. Of particular interest to the subject at hand, ketamine is promising in treating individuals addicted to opioids, alcohol, and cocaine. Therapeutically administered cannabinoids have been proposed for the treatment of multiple illnesses. These include, but are not limited to epilepsy, Parkinson\u27s disease, multiple sclerosis, chronic pain conditions, anxiety disorders, and addiction. The cannabinoid dronabinol has been seen to have varying effects. High doses appear to reduce withdrawal symptoms but this comes at the expense of increased adverse side effects such as sedation and tachycardia. Noribogaine is a weak MOR antagonist and relatively potent KOR agonist, which may explain the clinical anti-addictive effects. More research should be done to assess the viability of these medications for the treatment of OUD and withdrawal

    Experiences of training and implementation of integrated management of childhood illness (IMCI) in South Africa: a qualitative evaluation of the IMCI case management training course

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrated Management of Childhood Illness (IMCI) is a strategy to reduce mortality and morbidity in children under-5 years by improving management of common illnesses at primary level. IMCI has been shown to improve health worker performance, but constraints have been identified in achieving sufficient coverage to improve child survival, and implementation remains sub-optimal. At the core of the IMCI strategy is a clinical guideline whereby health workers use a series of algorithms to assess and manage a sick child, and give counselling to carers. IMCI is taught using a structured 11-day training course that combines classroom work with clinical practise; a variety of training techniques are used, supported by comprehensive training materials and detailed instructions for facilitators.</p> <p>Methods</p> <p>We conducted focus group discussions with IMCI trained health workers to explore their experiences of the methodology and content of the IMCI training course, whether they thought they gained the skills required for implementation, and their experiences of follow-up visits.</p> <p>Results</p> <p>Health workers found the training interesting, informative and empowering, and there was consensus that it improved their skills in managing sick children. They appreciated the variety of learning methods employed, and felt that repetition was important to reinforce knowledge and skills. Facilitators were rated highly for their knowledge and commitment, as well as their ability to identify problems and help participants as required. However, health workers felt strongly that the training time was too short to acquire skills in all areas of IMCI. Their increased confidence in managing sick children was identified by health workers as an enabling factor for IMCI implementation in the workplace, but additional time required for IMCI consultations was expressed as a major barrier. Although follow-up visits were described as very helpful, these were often delayed and there was no ongoing clinical supervision.</p> <p>Conclusion</p> <p>The IMCI training course was reported to be an effective method of acquiring skills, but more time is required, either during the course, or with follow-up, to improve IMCI implementation. Innovative solutions may be required to ensure that adequate skills are acquired and maintained.</p

    The UK Centre for Astrobiology:A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011-2016

    Get PDF
    Authors thank all those individuals, UK research councils, funding agencies, nonprofit organisations, companies and corporations and UK and non-UK government agencies, who have so generously supported our aspirations and hopes over the last 5 years and supported UKCA projects. They include the STFC, the Engineering and Physical Sciences Research Council (EPSRC), the Natural Environmental Research Council (NERC), the EU, the UK Space Agency, NASA, the European Space Agency (ESA), The Crown Estate, Cleveland Potash and others. The Astrobiology Academy has been supported by the UK Space Agency (UKSA), National Space Centre, the Science and Technology Facilities Council (STFC), Dynamic Earth, The Royal Astronomical Society, The Rotary Club (Shetlands) and the NASA Astrobiology Institute.The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities.Publisher PDFPeer reviewe

    Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource

    Get PDF
    Supplemental Data Supplemental Data include 65 figures and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2017.04.015. Supplemental Data Document S1. Figures S1–S65 Download Document S2. Article plus Supplemental Data Download Web Resources ClinGen, https://www.clinicalgenome.org/ ClinGen Gene Curation, https://www.clinicalgenome.org/working-groups/gene-curation/ ClinGen Gene Curation SOP, https://www.clinicalgenome.org/working-groups/gene-curation/projects-initiatives/gene-disease-clinical-validity-sop/ ClinGen Knowledge Base, https://search.clinicalgenome.org/kb/agents/sign_up OMIM, http://www.omim.org/ Orphanet, http://www.orpha.net/consor/cgi-bin/index.php With advances in genomic sequencing technology, the number of reported gene-disease relationships has rapidly expanded. However, the evidence supporting these claims varies widely, confounding accurate evaluation of genomic variation in a clinical setting. Despite the critical need to differentiate clinically valid relationships from less well-substantiated relationships, standard guidelines for such evaluation do not currently exist. The NIH-funded Clinical Genome Resource (ClinGen) has developed a framework to define and evaluate the clinical validity of gene-disease pairs across a variety of Mendelian disorders. In this manuscript we describe a proposed framework to evaluate relevant genetic and experimental evidence supporting or contradicting a gene-disease relationship and the subsequent validation of this framework using a set of representative gene-disease pairs. The framework provides a semiquantitative measurement for the strength of evidence of a gene-disease relationship that correlates to a qualitative classification: “Definitive,” “Strong,” “Moderate,” “Limited,” “No Reported Evidence,” or “Conflicting Evidence.” Within the ClinGen structure, classifications derived with this framework are reviewed and confirmed or adjusted based on clinical expertise of appropriate disease experts. Detailed guidance for utilizing this framework and access to the curation interface is available on our website. This evidence-based, systematic method to assess the strength of gene-disease relationships will facilitate more knowledgeable utilization of genomic variants in clinical and research settings

    The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    Get PDF
    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of α520=0.07±0.06\alpha_{\rm 5-20} = -0.07 \pm 0.06, α20148=0.39±0.04\alpha_{\rm 20-148} = -0.39 \pm0.04, and α5148=0.20±0.03\alpha_{\rm 5-148} = -0.20 \pm 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C^{\rm Sync} = (2.8 \pm 0.3) \times 10^{-6} \micro\kelvin^2.Comment: Accepted to Ap

    The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey

    Full text link
    We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the {\Lambda}CDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8{\sigma} level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.Comment: 19 pages, 13 figures. Submitted to ApJ. This paper is a companion to Hajian et al. (2010) and Dunkley et al. (2010

    The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data

    Get PDF
    We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +\- 1.4 muK^2 at ell=3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be Neff=2.79 +\- 0.56, in agreement with the canonical value of Neff=3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be Sigma m_nu < 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Yp = 0.225 +\- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha0 = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, dns/dlnk = -0.004 +\- 0.012.Comment: 26 pages, 22 figures. This paper is a companion to Das et al. (2013) and Dunkley et al. (2013). Matches published JCAP versio

    The Atacama Cosmology Telescope: Data Characterization and Map Making

    Get PDF
    We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2 hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial equator. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. Out of 1260 survey hours and 1024 detectors per array, 816 hours and 593 effective detectors remain after data selection for this frequency band, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector noise covariance at low frequencies in the TOD. The maps were made by solving the least-squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Cross-correlation with WMAP sky maps, as well as analysis from simulations, reveal that our maps are unbiased at multipoles ell > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.Comment: 20 pages, 18 figures, 6 tables, an ACT Collaboration pape

    The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey

    Full text link
    We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6x10^14 solar masses referenced to the cluster volume characterized by five hundred times the critical density. The Compton y -- X-ray luminosity mass comparison for the eleven best detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws.Comment: 13 pages, 7 figures, Accepted for publication in Ap
    corecore