190 research outputs found

    Ionization Equilibrium Timescales in Collisional Plasmas

    Full text link
    Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai (1984) and Hughes & Helfand (1985). In general the ionization evolution of an element Z in a constant electron temperature plasma is given by a coupled set of Z+1 first order differential equations. However, they can be recast as Z uncoupled first order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily-long time.Comment: 4 pages, 2 figures. Accepted for publication by the Astrophysical Journa

    A solar spectroscopic absolute abundance of argon from RESIK

    Full text link
    Observations of He-like and H-like Ar (Ar XVII and Ar XVIII) lines at 3.949 Angstroms and 3.733 Angstroms respectively with the RESIK X-ray spectrometer on the CORONAS-F spacecraft, together with temperatures and emission measures from the two channels of GOES, have been analyzed to obtain the abundance of Ar in flare plasmas in the solar corona. The line fluxes per unit emission measure show a temperature dependence like that predicted from theory, and lead to spectroscopically determined values for the absolute Ar abundance, A(Ar) = 6.44 pm 0.07 (Ar XVII) and 6.49 pm 0.16 (Ar XVIII) which are in agreement to within uncertainties. The weighted mean is 6.45 pm 0.06, which is between two recent compilations of the solar Ar abundance and suggest that the photospheric and coronal abundances of Ar are very similar.Comment: 4 figure

    Dielectronic Recombination of Argon-Like Ions

    Full text link
    We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total and partial Maxwellian-averaged DR rate coefficients from the initial ground level of K II -- Zn XIII ions. It is expected that these new results will advance the accuracy of the ionization balance for Ar-like M-shell ions and pave the way towards a detailed modeling of astrophysically relevant X-ray absorption features. We utilize the AUTOSTRUCTURE computer code to obtain the accurate core-excitation thresholds in target ions and carry out multiconfiguration Breit-Pauli (MCBP) calculations of the DR cross section in the independent-processes, isolated-resonance, distorted-wave (IPIRDW) approximation. Our results mediate the complete absence of direct DR calculations for certain Ar-like ions and question the reliability of the existing empirical rate formulas, often inferred from renormalized data within this isoelectronic sequence

    The Solar Flare Iron Abundance

    Full text link
    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in {\em RHESSI} X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz. an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe)=7.91±0.10A({\rm Fe}) = 7.91 \pm 0.10 (on a logarithmic scale, with A(H)=12A({\rm H}) = 12), or 2.6±0.62.6 \pm 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1,898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe)A({\rm Fe}) has important implications for radiation loss curves, which are estimated.Comment: Accepted by Astrophysical Journa

    The Solar Photospheric-to-Coronal Fe abundance from X-ray Fluorescence Lines

    Full text link
    The ratio of the Fe abundance in the photosphere to that in coronal flare plasmas is determined by X-ray lines within the complex at 6.7~keV (1.9~\AA) emitted during flares. The line complex includes the He-like Fe (\fexxv) resonance line ww (6.70~keV) and Fe Kα\alpha lines (6.39, 6.40~keV), the latter being primarily formed by the fluorescence of photospheric material by X-rays from the hot flare plasma. The ratio of the Fe Kα\alpha lines to the \fexxv\ ww depends on the ratio of the photospheric-to-flare Fe abundance, heliocentric angle θ\theta of the flare, and the temperature TeT_e of the flaring plasma. Using high-resolution spectra from X-ray spectrometers on the {\em P78-1} and {\em Solar Maximum Mission} spacecraft, the Fe abundance in flares is estimated to be 1.6±0.51.6\pm 0.5 and 2.0±0.32.0 \pm 0.3 times the photospheric Fe abundance, the {\em P78-1} value being preferred as it is more directly determined. This enhancement is consistent with results from X-ray spectra from the {\em RHESSI} spacecraft, but is significantly less than a factor 4 as in previous work.Comment: Accepted for publication by MNRA

    Updated Atomic Data and Calculations for X-ray Spectroscopy

    Full text link
    We describe the latest release of AtomDB, version 2.0.2, a database of atomic data and a plasma modeling code with a focus on X-ray astronomy. This release includes several major updates to the fundamental atomic structure and process data held within AtomDB, incorporating new ionization balance data, state-selective recombination data, and updated collisional excitation data for many ions, including the iron L-shell ions from Fe+16^{+16} to Fe+23^{+23} and all of the hydrogen- and helium-like sequences. We also describe some of the effects that these changes have on calculated emission and diagnostic line ratios, such as changes in the temperature implied by the He-like G-ratios of up to a factor of 2.Comment: Submitted to ApJ, 12 pages, 9 figure

    Gabapentinium picrate

    Get PDF
    The title compound {systematic name: [1-(carboxy­meth­yl)cyclo­hexyl]methanaminium 2,4,6-trinitro­phenolate}, C9H18NO2 +·C6H2N3O7 −, was synthesized from picric acid and gabapentin. The crystal packing is stabilized by intra­molecular N—H⋯O=N and N—H⋯O—Ph hydrogen bonds. An O—H⋯O inter­action is also present

    Highly Ionized Potassium Lines in Solar X-ray Spectra and the Abundance of Potassium

    Full text link
    The abundance of potassium is derived from X-ray lines observed during flares by the RESIK instrument on the solar mission CORONAS-F between 3.53 A and 3.57 A. The lines include those emitted by He-like K and Li-like K dielectronic satellites, which have been synthesized using the CHIANTI atomic code and newly calculated atomic data. There is good agreement of observed and synthesized spectra, and the theoretical behavior of the spectra with varying temperature estimated from the ratio of the two GOES channels is correctly predicted. The observed fluxes of the He-like K resonance line per unit emission measure gives log A(K) = 5.86 (on a scale log A(H) = 12), with a total range of a factor 2.9. This is higher than photospheric abundance estimates by a factor 5.5, a slightly greater enhancement than for other elements with first ionization potential (FIP) less than about 10 eV. There is, then, the possibility that enrichment of low-FIP elements in coronal plasmas depends weakly on the value of the FIP which for K is extremely low (4.34 eV). Our work also suggests that fractionation of elements to form the FIP effect occurs in the low chromosphere rather than higher up, as in some models.Comment: 14 pages, 3 figure

    A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems

    Full text link
    In this paper we present an analysis of the complexities of large group collaboration and its application to develop detailed requirements for collaboration schema for Autonomous Systems (AS). These requirements flow from our development of a framework for collaboration that provides a basis for designing, supporting and managing complex collaborative systems that can be applied and tested in various real world settings. We present the concepts of "collaborative flow" and "working as one" as descriptive expressions of what good collaborative teamwork can be in such scenarios. The paper considers the application of the framework within different scenarios and discuses the utility of the framework in modelling and supporting collaboration in complex organisational structures

    Sphinx measurements of the 2009 solar minimum x-ray emission

    Get PDF
    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.Comment: Astrophysical Journal, in press. 14 pp, 3 figure
    corecore