475 research outputs found

    Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease

    Full text link
    Probabilistic models for infectious disease dynamics are useful for understanding the mechanism underlying the spread of infection. When the likelihood function for these models is expensive to evaluate, traditional likelihood-based inference may be computationally intractable. Furthermore, traditional inference may lead to poor parameter estimates and the fitted model may not capture important biological characteristics of the observed data. We propose a novel approach for resolving these issues that is inspired by recent work in emulation and calibration for complex computer models. Our motivating example is the gravity time series susceptible-infected-recovered (TSIR) model. Our approach focuses on the characteristics of the process that are of scientific interest. We find a Gaussian process approximation to the gravity model using key summary statistics obtained from model simulations. We demonstrate via simulated examples that the new approach is computationally expedient, provides accurate parameter inference, and results in a good model fit. We apply our method to analyze measles outbreaks in England and Wales in two periods, the pre-vaccination period from 1944-1965 and the vaccination period from 1966-1994. Based on our results, we are able to obtain important scientific insights about the transmission of measles. In general, our method is applicable to problems where traditional likelihood-based inference is computationally intractable or produces a poor model fit. It is also an alternative to approximate Bayesian computation (ABC) when simulations from the model are expensive.Comment: 31 pages, 8 figures and 2 table

    The Shifting Demographic Landscape of Pandemic Influenza

    Get PDF
    Shweta Bansal is with Pennsylvania State University and NIH, Babak Pourbohloul is with British Columbia Centre for Disease Control and University of British Columbia, Nathaniel Hupert is with Weill Cornell Medical College and CDC, Bryan Grenfell is with Princeton University, Lauren Ancel Meyers is with UT Austin and Santa Fe Institute.Background -- As Pandemic (H1N1) 2009 influenza spreads around the globe, it strikes school-age children more often than adults. Although there is some evidence of pre-existing immunity among older adults, this alone may not explain the significant gap in age-specific infection rates. Methods and Findings -- Based on a retrospective analysis of pandemic strains of influenza from the last century, we show that school-age children typically experience the highest attack rates in primarily naive populations, with the burden shifting to adults during the subsequent season. Using a parsimonious network-based mathematical model which incorporates the changing distribution of contacts in the susceptible population, we demonstrate that new pandemic strains of influenza are expected to shift the epidemiological landscape in exactly this way. Conclusions -- Our analysis provides a simple demographic explanation for the age bias observed for H1N1/09 attack rates, and suggests that this bias may shift in coming months. These results have significant implications for the allocation of public health resources for H1N1/09 and future influenza pandemics.This work was supported by the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Science and Technology Directorate, Department of Homeland Security, and the Fogarty International Center, National Institutes of Health (NIH); grants from the James F. McDonnell Foundation, National Science Foundation (DEB-0749097), and NIH Models of Infectious Disease Agent Study (MIDAS) (U01-GM087719-01) to L.A.M.; and support from the Canadian Institutes of Health Research (PTL97125 and PAP93425) and the Michael Smith Foundation for Health Research to B.P. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Topographic determinants of foot and mouth disease transmission in the UK 2001 epidemic

    Get PDF
    Background A key challenge for modelling infectious disease dynamics is to understand the spatial spread of infection in real landscapes. This ideally requires a parallel record of spatial epidemic spread and a detailed map of susceptible host density along with relevant transport links and geographical features. Results Here we analyse the most detailed such data to date arising from the UK 2001 foot and mouth epidemic. We show that Euclidean distance between infectious and susceptible premises is a better predictor of transmission risk than shortest and quickest routes via road, except where major geographical features intervene. Conclusion Thus, a simple spatial transmission kernel based on Euclidean distance suffices in most regions, probably reflecting the multiplicity of transmission routes during the epidemic
    • …
    corecore