10 research outputs found
Recommended from our members
Natural ventilation reduces high TB transmission risk in traditional homes in rural KwaZulu-Natal, South Africa
Background: Transmission of drug susceptible and drug resistant TB occurs in health care facilities, and community and households settings, particularly in highly prevalent TB and HIV areas. There is a paucity of data regarding factors that may affect TB transmission risk in household settings. We evaluated air exchange and the impact of natural ventilation on estimated TB transmission risk in traditional Zulu homes in rural South Africa. Methods: We utilized a carbon dioxide decay technique to measure ventilation in air changes per hour (ACH). We evaluated predominant home types to determine factors affecting ACH and used the Wells-Riley equation to estimate TB transmission risk. Results: Two hundred eighteen ventilation measurements were taken in 24 traditional homes. All had low ventilation at baseline when windows were closed (mean ACH = 3, SD = 3.0), with estimated TB transmission risk of 55.4% over a ten hour period of exposure to an infectious TB patient. There was significant improvement with opening windows and door, reaching a mean ACH of 20 (SD = 13.1, p < 0.0001) resulting in significant decrease in estimated TB transmission risk to 9.6% (p < 0.0001). Multivariate analysis identified factors predicting ACH, including ventilation conditions (windows/doors open) and window to volume ratio. Expanding ventilation increased the odds of achieving ≥12 ACH by 60-fold. Conclusions: There is high estimated risk of TB transmission in traditional homes of infectious TB patients in rural South Africa. Improving natural ventilation may decrease household TB transmission risk and, combined with other strategies, may enhance TB control efforts
Linezolid Pharmacokinetics in South African Patients with Drug-Resistant Tuberculosis and a High Prevalence of HIV Coinfection.
The World Health Organization (WHO) recently recommended that linezolid be prioritized in treatment regimens for drug-resistant tuberculosis (TB), but there are limited data on its pharmacokinetics (PK) in patients with this disease. We conducted an observational study to explore covariate effects on linezolid PK and to estimate the probability of PK/pharmacodynamic target attainment in South African patients with drug-resistant TB. Consecutive adults on linezolid-based regimens were recruited in Cape Town and underwent intensive PK sampling at steady state. Noncompartmental analysis was performed. Thirty participants were included: 15 HIV positive, 26 on the initial dose of 600 mg daily, and 4 participants on 300 mg daily after dose reduction for linezolid-related toxicity. There was a negative correlation between body weight and exposure, with 17.4% (95% confidence interval [CI], 0.1 to 31.7) decrease in area under the concentration-time curve from 0 to 24 h (AUC0-24) per 10-kg weight increment after adjustment for other covariates. Age was an independent predictor of trough concentration, with an estimated 43.4% (95% CI, 5.9 to 94.2) increase per 10-year increment in age. The standard 600-mg dose achieved the efficacy target of free AUC/MIC of >119 at wild-type MIC values (≤0.5 mg/liter), but the probability of target attainment dropped to 61.5% (95% CI, 40.6 to 79.8) at the critical concentration of 1 mg/liter. When dosed at 600 mg daily, trough concentrations were above the toxicity threshold of 2 mg/liter in 57.7% (95% CI, 36.9 to 76.6). This confirms the narrow therapeutic index of linezolid, and alternative dosing strategies should be explored
Linezolid Population Pharmacokinetics in South African Adults with Drug-Resistant Tuberculosis.
Linezolid is widely used for drug-resistant tuberculosis (DR-TB) but has a narrow therapeutic index. To inform dose optimization, we aimed to characterize the population pharmacokinetics of linezolid in South African participants with DR-TB and explore the effect of covariates, including HIV coinfection, on drug exposure. Data were obtained from pharmacokinetic substudies in a randomized controlled trial and an observational cohort study, both of which enrolled adults with drug-resistant pulmonary tuberculosis. Participants underwent intensive and sparse plasma sampling. We analyzed linezolid concentration data using nonlinear mixed-effects modeling and performed simulations to estimate attainment of putative efficacy and toxicity targets. A total of 124 participants provided 444 plasma samples; 116 were on the standard daily dose of 600 mg, while 19 had dose reduction to 300 mg due to adverse events. Sixty-one participants were female, 71 were HIV-positive, and their median weight was 56 kg (interquartile range [IQR], 50 to 63). In the final model, typical values for clearance and central volume were 3.57 liters/h and 40.2 liters, respectively. HIV coinfection had no significant effect on linezolid exposure. Simulations showed that 600-mg dosing achieved the efficacy target (area under the concentration-time curve for the free, unbound fraction of the drug [[Formula: see text] at a MIC level of 0.5 mg/liter) with 96% probability but had 56% probability of exceeding safety target ([Formula: see text]. The 300-mg dose did not achieve adequate efficacy exposures. Our model characterized population pharmacokinetics of linezolid in South African patients with DR-TB and supports the 600-mg daily dose with safety monitoring
Tryptophan catabolism reflects disease activity in human tuberculosis.
There is limited understanding of the role of host metabolism in the pathophysiology of human tuberculosis (TB). Using high-resolution metabolomics with an unbiased approach to metabolic pathway analysis, we discovered that the tryptophan pathway is highly regulated throughout the spectrum of TB infection and disease. This regulation is characterized by increased catabolism of tryptophan to kynurenine, which was evident not only in active TB disease but also in latent TB infection (LTBI). Further, we found that tryptophan catabolism is reversed with effective treatment of both active TB disease and LTBI in a manner commensurate with bacterial clearance. Persons with active TB and LTBI also exhibited increased expression of indoleamine 2,3-dioxygenase-1 (IDO-1), suggesting IDO-1 mediates observed increases in tryptophan catabolism. Together, these data indicate IDO-1-mediated tryptophan catabolism is highly preserved in the human response to Mycobacterium tuberculosis and could be a target for biomarker development as well as host-directed therapies
Pre-detection history of extensively drug-resistant tuberculosis in KwaZulu-Natal, South Africa
Antimicrobial-resistant (AMR) infections pose a major threat to
global public health. Similar to other AMR pathogens, both historical and ongoing drug-resistant tuberculosis (TB) epidemics are
characterized by transmission of a limited number of predominant
Mycobacterium tuberculosis (Mtb) strains. Understanding how
these predominant strains achieve sustained transmission, particularly during the critical period before they are detected via clinical or
public health surveillance, can inform strategies for prevention and
containment. In this study, we employ whole-genome sequence
(WGS) data from TB clinical isolates collected in KwaZulu-Natal,
South Africa to examine the pre-detection history of a successful
strain of extensively drug-resistant (XDR) TB known as LAM4/KZN,
first identified in a widely reported cluster of cases in 2005. We
identify marked expansion of this strain concurrent with the onset
of the generalized HIV epidemic 12 y prior to 2005, localize its geographic origin to a location in northeastern KwaZulu-Natal ∼400 km
away from the site of the 2005 outbreak, and use protein structural
modeling to propose a mechanism for how strain-specific rpoB mutations offset fitness costs associated with rifampin resistance in
LAM4/KZN. Our findings highlight the importance of HIV coinfection, high preexisting rates of drug-resistant TB, human migration,
and pathoadaptive evolution in the emergence and dispersal of this
critical public health threat. We propose that integrating wholegenome sequencing into routine public health surveillance can enable the early detection and local containment of AMR pathogens
before they achieve widespread dispersal.The National Institute of Allergy and Infectious Disease and National Institutes of Health.https://www.pnas.orgpm2020Medical Microbiolog
Recommended from our members
Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis
BackgroundTreatment of multidrug-resistant tuberculosis requires long-term therapy with a combination of multiple second-line drugs. These drugs are associated with numerous adverse events that can cause severe morbidity, such as deafness, and in some instances can lead to death. Our aim was to estimate the absolute and relative frequency of adverse events associated with different tuberculosis drugs to provide useful information for clinicians and tuberculosis programmes in selecting optimal treatment regimens.MethodsWe did a meta-analysis using individual-level patient data that were obtained from studies that reported adverse events that resulted in permanent discontinuation of anti-tuberculosis medications. We used a database created for our previous meta-analysis of multidrug-resistant tuberculosis treatment and outcomes, for which we did a systematic review of literature published between Jan 1, 2009, and Aug 31, 2015 (updated April 15, 2016), and requested individual patient-level information from authors. We also considered for this analysis studies contributing patient-level data in response to a public call made by WHO in 2018. Meta-analysis for proportions and arm-based network meta-analysis were done to estimate the incidence of adverse events for each tuberculosis drug.Findings58 studies were identified, including 50 studies from the updated individual patient data meta-analysis for multidrug-resistant tuberculosis treatment. 35 of these studies, with 9178 patients, were included in our analysis. Using meta-analysis of proportions, drugs with low risks of adverse event occurrence leading to permanent discontinuation included levofloxacin (1·3% [95% CI 0·3-5·0]), moxifloxacin (2·9% [1·6-5·0]), bedaquiline (1·7% [0·7-4·2]), and clofazimine (1·6% [0·5-5·3]). Relatively high incidence of adverse events leading to permanent discontinuation was seen with three second-line injectable drugs (amikacin: 10·2% [6·3-16·0]; kanamycin: 7·5% [4·6-11·9]; capreomycin: 8·2% [6·3-10·7]), aminosalicylic acid (11·6% [7·1-18·3]), and linezolid (14·1% [9·9-19·6]). Risk of bias in selection of studies was judged to be low because there were no important differences between included and excluded studies. Variability between studies was significant for most outcomes analysed.InterpretationFluoroquinolones, clofazimine, and bedaquiline had the lowest incidence of adverse events leading to permanent drug discontinuation, whereas second-line injectable drugs, aminosalicylic acid, and linezolid had the highest incidence. These results suggest that close monitoring of adverse events is important for patients being treated for multidrug-resistant tuberculosis. Our results also underscore the urgent need for safer and better-tolerated drugs to reduce morbidity from treatment itself for patients with multidrug-resistant tuberculosis.FundingCanadian Institutes of Health Research, Centers for Disease Control and Prevention (USA), American Thoracic Society, European Respiratory Society, and Infectious Diseases Society of America