40 research outputs found
Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice
Leishmania amazonensis is the aetiological agent of a broad spectrum of leishmaniosis in South America. It can cause not only numerous cases of cutaneous leishmaniosis but also diffuse cutaneous leishmaniosis. Considering the diversity of parasite species causing different forms of the disease that coexist in the same region, it is desirable to develop a vaccine capable of eliciting cross-protection. We have previously described the use of HisAK70 DNA vaccine for immunization of mice to assess the induction of a resistant phenotype against Leishmania major and infantum infections. In this study, we extended its application in the murine model of infection by using L. amazonensis promastigotes. Our data revealed that 14 weeks post-infection, HisAK70-vaccinated mice showed key biomarkers of protection, such as higher iNOS/arginase activity, IFN-γ/IL-10, IFN-γ/IL-4, and GM-CSF/IL-10 ratios, in addition to an IgG2a-type response when compared to the control group. These findings correlated with the presentation of lower footpad swelling and parasite burdens in the immunized compared to the control mice. Overall, this study suggests that immunization with HisAK70 may be considered a suitable tool to combat leishmaniosis as it is able to induce a potent cellular immune response, which allows to control the infection caused by L. amazonensis
Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil
Leishmaniasis is a highly diverse group of diseases caused by kinetoplastid of the genus Leishmania. These parasites are taxonomically diverse, with human pathogenic species separated into two subgenera according to their development site inside the alimentary tract of the sand fly insect vector. The disease encompasses a variable spectrum of clinical manifestations with tegumentary or visceral symptoms. Among the causative species in Brazil, Leishmania (Leishmania) amazonensis is an important etiological agent of human cutaneous leishmaniasis that accounts for more than 8% of all cases in endemic regions. L. (L.) amazonensis is generally found in the north and northeast regions of Brazil. Here, we report the first isolation of L. (L.) amazonensis from dogs with clinical manifestations of visceral leishmaniasis in Governador Valadares, an endemic focus in the southeastern Brazilian State of Minas Gerais where L. (L.) infantum is also endemic. These isolates were characterized in terms of SNPs, chromosome and gene copy number variations, confirming that they are closely related to a previously sequenced isolate obtained in 1973 from the typical Northern range of this species. The results presented in this article will increase our knowledge of L. (L.) amazonensis-specific adaptations to infection, parasite survival and the transmission of this Amazonian species in a new endemic area of Brazil
Impact of dose and surface features on plasmatic and liver concentrations of biodegradable polymeric nanocapsules.
The effect of polymeric nanocapsule dose on plasmatic and liver concentrations 20 min after intravenous
administration in mice was evaluated. Nanocapsules were prepared with different polymers, namely, poly(D,Llactide)
(PLA), polyethylene glycol-block-poly(D,L-lactide) (PLA-PEG), and PLA with chitosan (PLA-Cs) and
compared with a nanoemulsion. These formulations were labelled with a phthalocyanine dye for fluorescent
detection. The nanostructures had narrow size distributions upon separation by asymmetric flow field flow
fractionation with static and dynamic light scattering detection, with average hydrodynamic diameters in the
130?300 nm range, negative zeta potentials, except PLA-Cs nanocapsules, which had a positive zeta potential.
Flow cytometry revealed uptake mostly by monocytes and neutrophils in mice and human blood. PLA
nanocapsules and the nanoemulsion showed dose-dependent plasma concentrations, where the percentage of
plasmatic fluorescence increased with increasing administered dose. In contrast, PLA-PEG nanocapsules led to a
dose-independent plasmatic profile. PLA-Cs nanocapsules showed the lowest plasmatic and liver levels of
fluorescence at all administered doses and significant intravenous toxicity in mice. This work demonstrates the
importance of considering the nanocarrier dose when evaluating pharmacokinetic and biodistribution data and
emphasizes the role of surface features in determining the plasmatic and liver concentrations of a poorly soluble
lipophilic encapsulated compound
Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis
All rights reserved. Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control, for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses, however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniquesThis work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Rede Nanobiotec/Brasil-Universidade Federal de Uberlândia/CAPES, PRONEX-FAPEMIG (APQ-01019-09), FAPEMIG (CBB-APQ-00819-12 and CBB-APQ-01778-2014), and CNPq (APQ-482976/2012-8, APQ-488237/2013-0, and APQ-467640/2014-9). EAFC and LRG are recipients of the grant from CNPq. MACF is the recipient of grants from FAPEMIG/CAPE
Prevalence and Factors Associated with Leishmania infantum Infection of Dogs from an Urban Area of Brazil as Identified by Molecular Methods
Visceral leishmaniasis (VL) is a disease caused by the parasite Leishmania infantum, and dogs are the most important domestic reservoirs of the agent. During recent decades, VL has expanded to large Brazilian urban centers. In the present work, we have demonstrated by using molecular techniques that the rate of canine infection as detected by serology has been considerably underestimated. Two groups of seronegative dogs (infected and non-infected according to molecular methods) were further evaluated from data obtained through interviews with owners of the animals. The factors associated with Leishmania infection in dogs were a family income of less than two minimum salaries, the knowledge of the owner regarding the vector, the dog spending most of its time in the backyard and the dog never having had a previous serological examination. Awareness regarding the factors associated with canine infection will improve health services and the understanding of the disease's expansion in urban areas
Peptide Vaccines for Leishmaniasis
Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development
Replacement of Leishmania (Leishmania) infantum populations in an endemic focus of visceral Leishmaniasis in Brazil
Visceral leishmaniasis is an important global health problem with an estimated of 50,000 to 90,000 new cases per year. VL is the most serious form of leishmaniasis as it can be fatal in 95% of the cases if it remains untreated. VL is a particularly acute problem in Brazil which contributed with 97% of all cases reported in 2020 in the Americas. In this country, VL affects mainly the poorest people in both urban and rural areas and continues to have a high mortality rate estimated around 8.15%. Here, we performed a temporal parasite population study using whole genome sequence data from a set of 34 canine isolates sampled in 2008, 2012 and 2015 from a re-emergent focus in Southeastern Brazil. Our study found the presence of two distinct sexual subpopulations that corresponded to two isolation periods. These subpopulations diverged hundreds of years ago with no apparent gene flow between them suggesting a process of rapid replacement during a two-year period. Sequence comparisons and analysis of nucleotide diversity also showed evidence of balancing selection acting on transport-related genes and antigenic families. To our knowledge this is the first population genomic study showing a turn-over of parasite populations in an endemic region for leishmaniasis. The complexity and rapid adaptability of these parasites pose new challenges to control activities and demand more integrated approaches to understand this disease in New World foci
The association between rLiHyp1 protein plus adjuvant and amphotericin B is an effective immunotherapy against visceral leishmaniasis in mice
Treatment of visceral leishmaniasis (VL) is compromised by drug toxicity, high cost and/or the emergence of resistant strains. Though canine vaccines are available, there are no licensed prophylactic human vaccines. One strategy to improve clinical outcome for infected patients is immunotherapy, which associates a chemotherapy that acts directly to reduce parasitism and the administration of an immunogen-adjuvant that activates the host protective Th1-type immune response. In this study, we evaluated an immunotherapy protocol in a murine model by combining recombinant (r)LiHyp1 (a hypothetical amastigote-specific Leishmania protein protective against Leishmania infantum infection), with monophosphoryl-lipid A (MPLA) as adjuvant and amphotericin B (AmpB) as reference antileishmanial drug. We used this protocol to treat L. infantum infected-BALB/c mice, and parasitological, immunological and toxicological evaluations were performed at 1 and 30 days after treatment. Results showed that mice treated with rLiHyp1/MPLA/AmpB presented the lowest parasite burden in all organs evaluated, when both a limiting dilution technique and qPCR were used. In addition, these animals produced higher levels of IFN-γ and IL-12 cytokines and IgG2a isotype antibody, which were associated with lower production of IL-4 and IL-10 and IgG1 isotype. Furthermore, low levels of renal and hepatic damage markers were found in animals treated with rLiHyp1/MPLA/AmpB possibly reflecting the lower parasite load, as compared to the other groups. We conclude that the rLiHyp1/MPLA/AmpB combination could be considered in future studies as an immunotherapy protocol to treat against VL
Liposomal formulation of ChimeraT, a multiple T-Cell epitope-containing recombinant protein, is a candidate vaccine for human visceral Leishmaniasis
Background: Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are no human vaccines in use routinely. The purpose of this study was to examine the immunogenicity of ChimeraT, a novel synthetic recombinant vaccine against visceral leishmaniasis (VL), incorporated into a human-compatible liposome formulation. Methods: BALB/c mice were immunized subcutaneously with ChimeraT/liposome vaccine, ChimeraT/saponin adjuvant, or ChimeraT/saline and immune responses examined in vitro and in vivo. Results: Immunization with the ChimeraT/liposome formulation induced a polarized Th1-type response and significant protection against L. infantum infection. ChimeraT/liposome vaccine stimulated significantly high levels of interferon (IFN)-γ, interleukin (IL)-12, and granulocyte macrophage-colony stimulating factor (GM-CSF) cytokines by both CD4 and CD8 T-cells, with correspondingly lower levels of IL-4 and IL-10 cytokines. Induced antibodies were predominantly IgG2a isotype, and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide (NO). Furthermore, we examined a small number of treated VL patients and found higher levels of circulating anti-ChimeraT protein IgG2 antibodies, compared to IgG1 levels. Conclusions: Overall, the liposomal formulation of ChimeraT induced a protective Th1-type immune response and thus could be considered in future studies as a vaccine candidate against human VL.</p