11 research outputs found

    BiCGCR2: A new extension of conjugate residual method for solving non-Hermitian linear systems

    Get PDF
    In the present paper, we introduce a new extension of the conjugate residual (CR) for solving non-Hermitian linear systems with the aim of developing an alternative basic solver to the established biconjugate gradient (BiCG), biconjugate residual (BiCR) and biconjugate A-orthogonal residual (BiCOR) methods. The proposed Krylov subspace method, referred to as the BiCGCR2 method, is based on short-term vector recurrences and is mathematically equivalent to both BiCR and BiCOR. We demonstrate by extensive numerical experiments that the proposed iterative solver has often better convergence performance than BiCG, BiCR and BiCOR. Hence, it may be exploited for the development of new variants of non-optimal Krylov subspace methods

    Severe serotonin depletion after conditional deletion of the vesicular monoamine transporter 2 gene in serotonin neurons: neural and behavioral consequences

    Get PDF
    International audienceThe vesicular monoamine transporter type 2 gene (VMAT2) plays a crucial role in the storage and synaptic release of all monoamines, including serotonin (5-HT). To evaluate the specific role of VMAT2 in 5-HT neurons, we produced a conditional ablation of VMAT2 under the control of the serotonin transporter (slc6a4) promoter. VMAT2sert-cre mice showed a major (-95%) depletion of 5-HT levels in the brain with no major alterations of the other monoamines. Raphe neurons contained no 5-HT immunoreactivity in VMAT2sert-cre mice but developed normal innervations, as assessed by both tryptophan hydroxylase 2 and 5-HT transporter labeling. Increased 5-HT1A autoreceptor coupling to G protein, as assessed with agonist stimulated [35S]GTP-Îł-S binding, was observed in the raphe area, indicating an adaptive change to the reduced 5-HT transmission. Behavioral evaluation in adult VMAT2sert-cre mice showed an increase of escape-like reactions in response to tail suspension, and anxiolytic-like response in the novelty suppressed feeding test. In an aversive ultrasound-induced defense paradigm, VMAT2sert-cre mice displayed a major increase of escape-like behaviors. Wild-type-like defense phenotype could be rescued by replenishing intracellular 5-HT stores with chronic pargyline (a monoamine oxidase inhibitor) treatment. Pargyline also allowed some form of 5-HT release, albeit in reduced amount, in synaptosomes from VMAT2sert-cre mice brain. These findings are coherent with the notion that 5-HT plays an important role in anxiety, and provide new insights on the role of endogenous 5-HT in defense behaviors

    Copernicus marine service ocean state report

    No full text
    The oceans regulate our weather and climate from global to regional scales. They absorb over 90% of accumulated heat in the climate system (IPCC Citation2013) and over a quarter of the anthropogenic carbon dioxide (Le QuĂ©rĂ© et al. Citation2016). They provide nearly half of the world’s oxygen. Most of our rain and drinking water is ultimately regulated by the sea. The oceans provide food and energy and are an important source of the planet's biodiversity and ecosystem services. They are vital conduits for trade and transportation and many economic activities depend on them (OECD Citation2016). Our oceans are, however, under threat due to climate change and other human induced activities and it is vital to develop much better, sustainable and science-based reporting and management approaches (UN Citation2017). Better management of our oceans requires long-term, continuous and state-of-the art monitoring of the oceans from physics to ecosystems and global to local scales. The Copernicus Marine Environment Monitoring Service (CMEMS) has been set up to address these challenges at European level. Mercator Ocean was tasked in 2014 by the European Union under a delegation agreement to implement the operational phase of the service from 2015 to 2021 (CMEMS Citation2014). The CMEMS now provides regular and systematic reference information on the physical state, variability and dynamics of the ocean, ice and marine ecosystems for the global ocean and the European regional seas (Figure 0.1; CMEMS Citation2016). This capacity encompasses the description of the current situation (analysis), the prediction of the situation 10 days ahead (forecast), and the provision of consistent retrospective data records for recent years (reprocessing and reanalysis). CMEMS provides a sustainable response to European user needs in four areas of benefits: (i) maritime safety, (ii) marine resources, (iii) coastal and marine environment and (iv) weather, seasonal forecast and climate. Figure 0.1. CMEMS geographical areas on the map are for: 1 – Global Ocean; 2 – Arctic Ocean from 62°N to North Pole; 3 – Baltic Sea, which includes the whole Baltic Sea including Kattegat at 57.5°N from 10.5°E to 12.0°E; 4 – European North-West Shelf Sea, which includes part of the North East Atlantic Ocean from 48°N to 62°N and from 20°W to 13°E. The border with the Baltic Sea is situated in the Kattegat Strait at 57.5°N from 10.5°E.to 12.0°E; 5 – Iberia-Biscay-Ireland Regional Seas, which includes part of the North East Atlantic Ocean from 26 to 48°N and 20°W to the coast. The border with the Mediterranean Sea is situated in the Gibraltar Strait at 5.61°W; 6 – Mediterranean Sea, which includes the whole Mediterranean Sea until the Gibraltar Strait at 5.61°W and the Dardanelles Strait; 7 – Black Sea, which includes the whole Black Sea until the Bosporus Strait

    Copernicus Marine Service Ocean State Report

    Get PDF
    The Compernicus Marine Environmenta and Monitoring Servic
    corecore