29 research outputs found
Mid-IR frequency measurement using an optical frequency comb and a long-distance remote frequency reference
We have built a frequency chain which enables to measure the absolute
frequency of a laser emitting in the 28-31 THz frequency range and stabilized
onto a molecular absorption line. The set-up uses an optical frequency comb and
an ultrastable 1.55 m frequency reference signal, transferred from
LNE-SYRTE to LPL through an optical link. We are now progressing towards the
stabilization of the mid-IR laser via the frequency comb and the extension of
this technique to quantum cascade lasers. Such a development is very
challenging for ultrahigh resolution molecular spectroscopy and fundamental
tests of physics with molecules
Ultra-stable long distance optical frequency distribution using the Internet fiber network
We report an optical link of 540 km for ultrastable frequency distribution
over the Internet fiber network. The stable frequency optical signal is
processed enabling uninterrupted propagation on both directions. The robustness
and the performance of the link are enhanced by a cost effective fully
automated optoelectronic station. This device is able to coherently regenerate
the return optical signal with a heterodyne optical phase locking of a low
noise laser diode. Moreover the incoming signal polarization variation are
tracked and processed in order to maintain beat note amplitudes within the
operation range. Stable fibered optical interferometer enables optical
detection of the link round trip phase signal. The phase-noise compensated link
shows a fractional frequency instability in 10 Hz bandwidth of 5x10-15 at one
second measurement time and 2x10-19 at 30 000 s. This work is a significant
step towards a sustainable wide area ultrastable optical frequency distribution
and comparison network
Cascaded multiplexed optical link on a telecommunication network for frequency dissemination
We demonstrate a cascaded optical link for ultrastable frequency
dissemination comprised of two compensated links of 150 km and a repeater
station. Each link includes 114 km of Internet fiber simultaneously carrying
data traffic through a dense wavelength division multiplexing technology, and
passes through two routing centers of the telecommunication network. The
optical reference signal is inserted in and extracted from the communication
network using bidirectional optical add-drop multiplexers. The repeater station
operates autonomously ensuring noise compensation on the two links and the
ultra-stable signal optical regeneration. The compensated link shows a
fractional frequency instability of 3 \times 10-15 at one second measurement
time and 5 \times 10-20 at 20 hours. This work paves the way to a wide
dissemination of ultra-stable optical clock signals between distant
laboratories via the Internet network
Phylogeography and Molecular Epidemiology of Yersinia pestis in Madagascar
Plague, caused by the bacterium Yersinia pestis, has been a problem in Madagascar since it was introduced in 1898. It mainly affects the central highlands, but also has caused several large outbreaks in the port city of Mahajanga, after it was reintroduced there in the 1990s. Despite its prevalence, the genetic diversity and related geographic distribution of different genetic groups of Y. pestis in Madagascar has been difficult to study due to the great genetic similarity among isolates. We subtyped a set of Malagasy isolates and identified two major genetic groups that were subsequently divided into 11 and 4 subgroups, respectively. Y. pestis appears to be maintained in several geographically separate subpopulations. There is also evidence for multiple long distance transfers of Y. pestis, likely human mediated. Such transfers have resulted in the reintroduction and establishment of plague in the port city of Mahajanga where there is evidence for multiple transfers both from and to the central highlands. The maintenance and spread of Y. pestis in Madagascar is a dynamic and highly active process that relies on the natural cycle between the primary host, the black rat, and its flea vectors as well as human activity
Quantum cascade laser frequency stabilisation at the sub-Hz level
Quantum Cascade Lasers (QCL) are increasingly being used to probe the
mid-infrared "molecular fingerprint" region. This prompted efforts towards
improving their spectral performance, in order to reach ever-higher resolution
and precision. Here, we report the stabilisation of a QCL onto an optical
frequency comb. We demonstrate a relative stability and accuracy of 2x10-15 and
10-14, respectively. The comb is stabilised to a remote near-infrared
ultra-stable laser referenced to frequency primary standards, whose signal is
transferred via an optical fibre link. The stability and frequency traceability
of our QCL exceed those demonstrated so far by two orders of magnitude. As a
demonstration of its capability, we then use it to perform high-resolution
molecular spectroscopy. We measure absorption frequencies with an 8x10-13
relative uncertainty. This confirms the potential of this setup for ultra-high
precision measurements with molecules, such as our ongoing effort towards
testing the parity symmetry by probing chiral species
Ultra-stable frequency transfer with optical link and application to the phase-stabilization of a mid-infrared laser
Ce manuscrit prĂ©sente le transfert dâune rĂ©fĂ©rence de frĂ©quence optique ultra-stable Ă un lien optique et son application Ă la stabilisation en frĂ©quence dâun laser moyen-infrarouge. Un lien optique permet de transfĂ©rer une frĂ©quence ultra-stable par fibre optique sans dĂ©grader sa stabilitĂ© grĂące Ă une compensation du bruit apportĂ©e lors de la propagation. Nous avons Ă©tendu cette technique Ă des liens de grande longueur en transfĂ©rant la rĂ©fĂ©rence de frĂ©quence simultanĂ©ment avec les donnĂ©es du rĂ©seau Internet. Ainsi des liens de 300 km puis 540 km ont Ă©tĂ© dĂ©montrĂ©s avec une stabilitĂ© de lâordre de 10â» Âčâč Ă 10⎠s. Ce dispositif Ă Ă©tĂ© utilisĂ© au LPL pour asservir un laser COÂČ Ă©mettant Ă 10 ”m sur une rĂ©fĂ©rence de frĂ©quence dĂ©veloppĂ©e au LNE-SYRTE, Ă lâObservatoire de Paris. Celle-ci est constituĂ©e dâun laser ultra-stable Ă©mettant Ă 1,54 ”m, dont la frĂ©quence est mesurĂ©e par rapport aux Ă©talons primaires du LNE-SYRTE grĂące Ă un laser femtoseconde. Cette rĂ©fĂ©rence est transfĂ©rĂ©e par un lien optique jusquâau LPL oĂč elle permet de stabiliser la frĂ©quence de rĂ©pĂ©tition dâun second laser femtoseconde et de mesurer ou contrĂŽler la frĂ©quence dâun laser COÂČ . Lorsque celui-ci est asservi sur une rĂ©fĂ©rence molĂ©culaire (OsOâ), la stabilitĂ© est de 4.10â»Âč⎠à 1 s. Les performances sont encore meilleures lorsque le laser COÂČ est asservi directement sur la rĂ©fĂ©rence optique. Le laser stabilisĂ© pourra ensuite ĂȘtre utilisĂ© pour lâexpĂ©rience dâobservation de la violation de paritĂ© dans les molĂ©cules chirales dĂ©veloppĂ©es au LPL. Ceci dĂ©montre la faisabilitĂ© dâexpĂ©riences de spectroscopie molĂ©culaire Ă ultra haute rĂ©solution dans les laboratoires ne disposant pas dâĂ©talons de frĂ©quence.This manuscript details the transfer of an ultra-stable optical frequency reference by means of an optical link and its application to the phase-lock of a mid-infared laser. An optical fiber link allows the ultra-stable transfer of a frequency by using a scheme wich compensates the propagation noise. We extended this system to longer links, and transferred the optical frequency reference simultaneously witn internet data. A cascaded link of 300 km and a simple link of 540 km had been demonstrated with a stability of 10â» Âčâč at 10⎠s. Such a link as been used to lock a COÂČ laser at LPL, emitting at 10 ”m, to a frequency reference developed at LNE-SRTE, Observatoire de Paris. This reference is an ultra-stable laser, emitting at 1.54 ”m, the frequency of wich is measured against the primary standards of LNE-SYRTE by using a femtosecond laser. This reference is tranferred by an optical link to LPL, in order to stabilize the repetition rate of a second femtosecondlaser and to measure or control the frenquency of a COÂČ laser. When the COÂČ laser is locked to a molecular reference (OsOâ), the stability is 4.10â»Âč⎠at 1s. The performances are even better when the COÂČ laser is locked directly to the optical reference. Then the laser coulb be used for the experiment of observation of the parity violation in chiral molecules, in progress at LPL. This shows the feasability of high resolution molecular spectroscopy experiments in laboratoratories in wich there is no primary standards
Transfert à trÚs haute résolution d'une référence de réquence ultra-stable par lien optique et application à la stabilisation d'un laser moyen-infrarouge
This manuscript details the transfer of an ultra-stable optical frequency reference by means of an optical link and its application to the phase-lock of a mid-infrared laser. An optical fiber link allows the ultrastable transfer of a frequency by using a scheme which compensates the propagation noise. We extended this system to longer links, and transferred the optical frequency reference simultaneously with Internet data. A cascaded link of 300 km and a simple link of 540 km had been demonstrated with a stability of 10-19 at 104 s. Such a link has been used to lock a CO2 laser at LPL, emitting at 10 ”m, to a frequency reference developed at LNE-SYRTE, Observatoire de Paris. This reference is an ultra-stable laser, emitting at 1.54 ”m, the frequency of which is measured against the primary standards of LNE-SYRTE by using a femtosecond laser. This reference is transferred by an optical link to LPL, in order to stabilize the repetition rate of a second femtosecond laser and to measure or control the frequency of a CO2 laser. When the CO2 laser is locked to a molecular reference (OsO4), the stability is 4.10-14 at 1 s. The performances are even better when the CO2 laser is locked directly to the optical reference. Then the laser could be used for the experiment of observation of the parity violation in chiral molecules, in progress at LPL. This shows the feasibility of high resolution molecular spectroscopy experiments in laboratories in which there is no primary standards.Ce manuscrit prĂ©sente le transfert d'une rĂ©fĂ©rence de frĂ©quence optique ultra-stable grĂące Ă un lien optique et son application Ă la stabilisation en frĂ©quence d'un laser moyen-infrarouge. Un lien optique permet de transfĂ©rer un signal ultrastable de frĂ©quence par fibre optique sans dĂ©grader sa stabilitĂ© grĂące Ă une compensation du bruit apportĂ©e lors de la propagation. Nous avons Ă©tendu cette technique Ă des liens de grande longueur en transfĂ©rant la rĂ©fĂ©rence de frĂ©quence simultanĂ©ment avec les donnĂ©es du rĂ©seau internet. Ainsi des liens de 300 km puis 540 km ont Ă©tĂ© dĂ©montrĂ©s avec une stabilitĂ© de l'ordre de 10-19 Ă 104 s. Ce dispositif a Ă©tĂ© utilisĂ© au LPL pour asservir un laser CO2 Ă©mettant Ă 10 ”m sur une rĂ©fĂ©rence de frĂ©quence dĂ©veloppĂ©e au LNE-SYRTE, Ă l'Observatoire de Paris. Celle-ci est constituĂ©e d'un laser ultra-stable Ă©mettant Ă 1,54 ”m, dont la frĂ©quence est mesurĂ©e par rapport aux Ă©talons primaires du LNE-SYRTE grĂące Ă un laser femtoseconde. Cette rĂ©fĂ©rence est transfĂ©rĂ©e par lien optique jusqu'au LPL oĂč elle permet de stabiliser la frĂ©quence de rĂ©pĂ©tition d'un second laser femtoseconde et de mesurer ou contrĂŽler la frĂ©quence d'un laser CO2. Lorsque celui-ci est asservi sur une rĂ©fĂ©rence molĂ©culaire (OsO4), la stabilitĂ© est de 4.10-14 Ă 1 s. Les performances sont encore meilleures lorsque le laser CO2 est asservi directement sur la rĂ©fĂ©rence optique. Le laser stabilisĂ© pourra ensuite ĂȘtre utilisĂ© pour l'expĂ©rience d'observation de la violation de paritĂ© dans les molĂ©cules chirales dĂ©veloppĂ©e au LPL. Ceci dĂ©montre la faisabilitĂ© d'expĂ©riences de spectroscopie molĂ©culaire Ă ultra haute rĂ©solution dans les laboratoires ne disposant pas d'Ă©talons de frĂ©quences
Mid-IR frequency measurement using an optical frequency comb and a long-distance remote frequency reference
International audienc
Mid-IR frequency measurement using an optical frequency comb and a long-distance remote frequency reference
International audienc
Mid-IR frequency measurement using an optical frequency comb and a long-distance remote frequency reference
We have built a frequency chain which enables to measure the absolute frequency of a laser emitting in the 28-31 THz frequency range and stabilized onto a molecular absorption line. The set-up uses an optical frequency comb and an ultrastable 1.55 ”m frequency reference signal, transferred from LNE-SYRTE to LPL through an optical link. We are now progressing towards the stabilization of the mid-IR laser via the frequency comb and the extension of this technique to quantum cascade lasers. Such a development is very challenging for ultrahigh resolution molecular spectroscopy and fundamental tests of physics with molecules