7 research outputs found
The status of Quantum Geometry in the dynamical sector of Loop Quantum Cosmology
This letter is motivated by the recent papers by Dittrich and Thiemann and,
respectively, by Rovelli discussing the status of Quantum Geometry in the
dynamical sector of Loop Quantum Gravity. Since the papers consider model
examples, we also study the issue in the case of an example, namely on the Loop
Quantum Cosmology model of space-isotropic universe. We derive the
Rovelli-Thiemann-Ditrich partial observables corresponding to the quantum
geometry operators of LQC in both Hilbert spaces: the kinematical one and,
respectively, the physical Hilbert space of solutions to the quantum
constraints. We find, that Quantum Geometry can be used to characterize the
physical solutions, and the operators of quantum geometry preserve many of
their kinematical properties.Comment: Latex, 12 page
Shape in an Atom of Space: Exploring quantum geometry phenomenology
A phenomenology for the deep spatial geometry of loop quantum gravity is
introduced. In the context of a simple model, an atom of space, it is shown how
purely combinatorial structures can affect observations. The angle operator is
used to develop a model of angular corrections to local, continuum flat-space
3-geometries. The physical effects involve neither breaking of local Lorentz
invariance nor Planck scale suppression, but rather reply on only the
combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example
of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde
Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation
The properties of the Volume operator in Loop Quantum Gravity, as constructed
by Ashtekar and Lewandowski, are analyzed for the first time at generic
vertices of valence greater than four. The present analysis benefits from the
general simplified formula for matrix elements of the Volume operator derived
in gr-qc/0405060, making it feasible to implement it on a computer as a matrix
which is then diagonalized numerically. The resulting eigenvalues serve as a
database to investigate the spectral properties of the volume operator.
Analytical results on the spectrum at 4-valent vertices are included. This is a
companion paper to arXiv:0706.0469, providing details of the analysis presented
there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008.
More compact presentation. Sign factor combinatorics now much better
understood in context of oriented matroids, see arXiv:1003.2348, where also
important remarks given regarding sigma configurations. Subsequent
computations revealed some minor errors, which do not change qualitative
results but modify some numbers presented her
Properties of the Volume Operator in Loop Quantum Gravity I: Results
We analyze the spectral properties of the volume operator of Ashtekar and
Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the
classical volume expression for regions in three dimensional Riemannian space.
Our analysis considers for the first time generic graph vertices of valence
greater than four. Here we find that the geometry of the underlying vertex
characterizes the spectral properties of the volume operator, in particular the
presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is
found to depend on the vertex embedding. We compute the set of all
non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of
valence 5--7, and argue that these sets can be used to label spatial
diffeomorphism invariant states. We observe how gauge invariance connects
vertex geometry and representation properties of the underlying gauge group in
a natural way. Analytical results on the spectrum on 4-valent vertices are
included, for which the presence of a volume gap is proved. This paper presents
our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper
arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348
for important remarks regarding the sigma configurations. Subsequent
computations have revealed some minor errors, which do not change the
qualitative results but modify some of the numbers presented her
Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity
We analyze combinatorial structures which play a central role in determining
spectral properties of the volume operator in loop quantum gravity (LQG). These
structures encode geometrical information of the embedding of arbitrary valence
vertices of a graph in 3-dimensional Riemannian space, and can be represented
by sign strings containing relative orientations of embedded edges. We
demonstrate that these signature factors are a special representation of the
general mathematical concept of an oriented matroid. Moreover, we show that
oriented matroids can also be used to describe the topology (connectedness) of
directed graphs. Hence the mathematical methods developed for oriented matroids
can be applied to the difficult combinatorics of embedded graphs underlying the
construction of LQG. As a first application we revisit the analysis of [4-5],
and find that enumeration of all possible sign configurations used there is
equivalent to enumerating all realizable oriented matroids of rank 3, and thus
can be greatly simplified. We find that for 7-valent vertices having no
coplanar triples of edge tangents, the smallest non-zero eigenvalue of the
volume spectrum does not grow as one increases the maximum spin \jmax at the
vertex, for any orientation of the edge tangents. This indicates that, in
contrast to the area operator, considering large \jmax does not necessarily
imply large volume eigenvalues. In addition we give an outlook to possible
starting points for rewriting the combinatorics of LQG in terms of oriented
matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos
corrected, presentation slightly extende
Semiclassical Mechanics of the Wigner 6j-Symbol
The semiclassical mechanics of the Wigner 6j-symbol is examined from the
standpoint of WKB theory for multidimensional, integrable systems, to explore
the geometrical issues surrounding the Ponzano-Regge formula. The relations
among the methods of Roberts and others for deriving the Ponzano-Regge formula
are discussed, and a new approach, based on the recoupling of four angular
momenta, is presented. A generalization of the Yutsis-type of spin network is
developed for this purpose. Special attention is devoted to symplectic
reduction, the reduced phase space of the 6j-symbol (the 2-sphere of Kapovich
and Millson), and the reduction of Poisson bracket expressions for
semiclassical amplitudes. General principles for the semiclassical study of
arbitrary spin networks are laid down; some of these were used in our recent
derivation of the asymptotic formula for the Wigner 9j-symbol.Comment: 64 pages, 50 figure