344 research outputs found

    Variable Neighborhood Descent Matheuristic for the Drone Routing Problem with Beehives Sharing

    Get PDF
    In contemporary urban logistics, drones will become a preferred transportation mode for last-mile deliveries, as they have shown commercial potential and triple-bottom-line performance. Drones, in fact, address many challenges related to congestion and emissions and can streamline the last leg of the supply chain, while maintaining economic performance. Despite the common conviction that drones will reshape the future of deliveries, numerous hurdles prevent practical implementation of this futuristic vision. The sharing economy, referred to as a collaborative business model that foster sharing, exchanging and renting resources, could lead to operational improvements and enhance the cost control ability and the flexibility of companies using drones. For instance, the Amazon patent for drone beehives, which are fulfilment centers where drones can be restocked before flying out again for another delivery, could be established as a shared delivery systems where different freight carriers jointly deliver goods to customers. Only a few studies have addressed the problem of operating such facilities providing services to retail companies. In this paper, we formulate the problem as a deterministic location-routing model and derive its robust counterpart under the travel time uncertainty. To tackle the computational complexity of the model caused by the non-linear energy consumption rates in drone battery, we propose a tailored matheuristic combining variable neighborhood descent with a cut generation approach. The computational experiments show the efficiency of the solution approach especially compared to the Gurobi solver

    A Selective Scheduling Problem with Sequence-dependent Setup Times: A Risk-averse Approach

    Get PDF
    This paper addresses a scheduling problem with parallel identical machines and sequence-dependent setup times in which the setup and the processing times are random parameters. The model aims at minimizing the total completion time while the total revenue gained by the processed jobs satisfies the manufacturer’s threshold. To handle the uncertainty of random parameters, we adopt a risk-averse distributionally robust approach developed based on the Conditional Value-at-Risk measure hedging against the worst-case performance. The proposed model is tested via extensive experimental results performed on a set of benchmark instances. We also show the efficiency of the deterministic counterpart of our model, in comparison with the state-of-the-art model proposed for a similar problem in a deterministic context

    Energy Efficient UAV-Based Last-Mile Delivery: A Tactical-Operational Model With Shared Depots and Non-Linear Energy Consumption

    Get PDF
    In this paper, we have investigated a drone delivery problem to address the tactical decisions arising in last-mile applications where the connection with operational plans is taken into account. The problem deals with the tactical selection of a subset of FCs to launch and retrieve the drones, and the fleet sizing decisions on the optimal number of drones to be employed. We have incorporated the non-linear and load-dependent energy consumption function into the definition of a load-indexed layered network, leading to the definition of a MILP that can be efficiently solved for instances with 50 and 75 customers. There are several fruitful directions for future research. The use of shared depots implies for the drones the freedom to choose different FCs for departure and arrival. Anyway, a drawback may exist in the considered scenario, since we should have enough drones in each FC for the next period. The extension of the present model to the multi-period location routing case, where the location decisions are taken once and the routing plans are addressed within each period, is an interesting issue for future research. Moreover, the design of heuristic and self-adaptive approaches to alleviate the computational burden for larger instances deserves further attention, as well as the extension of the present model to en-route drone charging

    Combination of GNSS and SLR Measurements: Contribution to the Realization of the Terrestrial Reference Frame

    Get PDF
    The accurate and precise implementation of the International Terrestrial Reference Frame (ITRF) is a fundamental requirement for the development of Earth System Sciences. The actual realization of the reference frame, in fact, directly impacts a number of different tasks ranging from precise satellite orbit determination to altimeter calibration, satellite antenna offset assessment for Global Navigation Satellite System (GNSS) and validation of center of mass corrections for spacecrafts carrying on board retro-reflectors for Satellite Laser Ranging (SLR). As a consequence, all the studies investigating motions of the Earth’s surface, including oceans and ice-sheets, strictly depend on the availability of a reliable TRF that is fundamental for geo-referencing the relevant measurements. ITRF realizations must then be periodically updated, in order to account for newly acquired observations and for upgrades in data analysis procedures and/or combination methods. Any innovative computation strategy should ameliorate the realization of the frame physical parameters, namely the origin and the scale, upon which a number of scientific applications critically rely. This work addresses the potential of combining GNSS and SLR observations via their co-location on board GPS/GLONASS satellites. In principle, the inter-technique connection so achieved could be exploited for the computation of the ITRF in place of terrestrial ties. These lasts are known to be currently a limiting factor of the frame accuracy because of their inhomogeneous distribution and of their discrepancies with space geodesy estimates due to technique systematic errors. In this study, the strength of the alternative link in orbit has been thoroughly investigated in order to evaluate the performances of the selected space tie approach under the available operational conditions. The analysis focuses on the characterization of the precision, the accuracy and the pertinence of the combined frame parameters

    Monitoring and understanding crustal deformation by means of GPS and InSAR data

    Get PDF
    Monitoring deformation of the Earth’s crust by using data acquired by both the GNSS and SAR techniques allows describing crustal movements with high spatial and temporal resolution. This is a key contribution for achieving a deeper and better insight of geodynamic processes. Combination of the two techniques provides a very powerful means, however, before combing the different data sets it is important to properly understand their respective contribution. For this purpose, strictly simultaneous and long time series would be necessary. This is not, in general, a common case due to the relatively long SAR satellites revisit time. A positive exception is represented by the data set of COSMO SKYMed (CSK) images made available for this study by the Italian Space Agency (ASI). The flyover area encompass the city of Bologna and the smaller nearby town of Medicina where permanent GPS stations are operational. At the times of the CSK flyovers, we compared the GPS and SAR Up and East coordinates of a few stations as well as differential tropospheric delays derived by both techniques. The GPS time series were carefully screened and corrected for the presence of discontinuities by adopting a dedicated statistical procedure. The comparisons of both the estimated deformation and the tropospheric delays are encouraging and highlight the need for having available a more evenly sampled SAR data set

    Unveiling the spatial distribution of aflatoxin B1 and plant defense metabolites in maize using AP‐SMALDI mass spectrometry imaging

    Get PDF
    SUMMARYIn order to cope with the presence of unfavorable compounds, plants can biotransform xenobiotics, translocate both parent compounds and metabolites, and perform compartmentation and segregation at the cellular or tissue level. Such a scenario also applies to mycotoxins, fungal secondary metabolites with a pre‐eminent role in plant infection. In this work, we aimed to describe the effect of the interplay between Zea mays (maize) and aflatoxin B1 (AFB1) at the tissue and organ level. To address this challenge, we used atmospheric pressure scanning microprobe matrix‐assisted laser desorption/ionization mass spectrometry imaging (AP‐SMALDI MSI) to investigate the biotransformation, localization and subsequent effects of AFB1 on primary and secondary metabolism of healthy maize plants, both in situ and from a metabolomics standpoint. High spatial resolution (5 µm) provided fine localization of AFB1, which was located within the root intercellular spaces, and co‐localized with its phase‐I metabolite aflatoxin M2. We provided a parallel visualization of maize metabolic changes, induced in different organs and tissues by an accumulation of AFB1. According to our untargeted metabolomics investigation, anthocyanin biosynthesis and chlorophyll metabolism in roots are most affected. The biosynthesis of these metabolites appears to be inhibited by AFB1 accumulation. On the other hand, metabolites found in above‐ground organs suggest that the presence of AFB1 may also activate the biochemical response in the absence of an actual fungal infection; indeed, several plant secondary metabolites known for their antimicrobial or antioxidant activities were localized in the outer tissues, such as phenylpropanoids, benzoxazinoids, phytohormones and lipids

    Characterization and morphological methods for oral biofilm visualization: where are we nowadays?

    Get PDF
    The oral microbiome represents an essential component of the oral ecosystem whose symbiotic relationship contributes to health maintenance. The biofilm represents a state of living of microorganisms surrounding themselves with a complex and tridimensional organized polymeric support and defense matrix. The substrates where the oral biofilm adhere can suffer from damages due to the microbial community metabolisms. Therefore, microbial biofilm represents the main etiological factor of the two pathologies of dental interest with the highest incidence, such as carious pathology and periodontal pathology. The study, analysis, and understanding of the characteristics of the biofilm, starting from the macroscopic structure up to the microscopic architecture, appear essential. This review examined the morphological methods used through the years to identify species, adhesion mechanisms that contribute to biofilm formation and stability, and how the action of microbicidal molecules is effective against pathological biofilm. Microscopy is the primary technique for the morphological characterization of biofilm. Light microscopy, which includes the stereomicroscope and confocal laser microscopy (CLSM), allows the visualization of microbial communities in their natural state, providing valuable information on the spatial arrangement of different microorganisms within the biofilm and revealing microbial diversity in the biofilm matrix. The stereomicroscope provides a three-dimensional view of the sample, allowing detailed observation of the structure, thickness, morphology, and distribution of the various species in the biofilm while CLSM provides information on its three-dimensional architecture, microbial composition, and dynamic development. Electron microscopy, scanning (SEM) or transmission (TEM), allows the high-resolution investigation of the architecture of the biofilm, analyzing the bacterial population, the extracellular polymeric matrix (EPS), and the mechanisms of the physical and chemical forces that contribute to the adhesion of the biofilm to the substrates, on a nanometric scale. More advanced microscopic methodologies, such as scanning transmission electron microscopy (STEM), high-resolution transmission electron microscopy (HR-TEM), and correlative microscopy, have enabled the evaluation of antibacterial treatments, due to the potential to reveal the efficacy of different molecules in breaking down the biofilm. In conclusion, evidence based on scientific literature shows that established microscopic methods represent the most common tools used to characterize biofilm and its morphology in oral microbiology. Further protocols and studies on the application of advanced microscopic techniques are needed to obtain precise details on the microbiological and pathological aspects of oral biofilm

    The Role of Bronchoalveolar Lavage in Systemic Sclerosis Interstitial Lung Disease: A Systematic Literature Review

    Get PDF
    The role of Bronchoalveolar Lavage (BAL) in the evaluation of systemic sclerosis (SSc) interstitial lung disease (ILD) is still controversial. The aim of this systematic literature review was to investigate the use of BAL in SSc-ILD, and to focus on the pros and cons of its real-life application. Methods: PubMed, Cochrane, and Embase were questioned from inception until 31 December 2021. Results: Eighteen papers were finally analyzed. A positive correlation was observed between lung function and BAL cytology; in particular, BAL neutrophilia/granulocytosis was related to lower diffusing capacity for carbon monoxide (DLCO) values and lower forced vital capacity (FVC). Moreover, a positive correlation between BAL cellularity and high-resolution computed tomography (HRCT) findings has been reported by several authors. Cytokines, chemokines, growth factors, coagulation factors, and eicosanoids have all been shown to be present, more often and in higher quantities in SSc-ILD patients than in the health control and, in some cases, they were related to more severe pulmonary disease. There was no consensus regarding the role of BAL cellularity as a predictor of mortality

    Risk of hematological malignancies associated with magnetic fields exposure from power lines: a case-control study in two municipalities of northern Italy

    Get PDF
    BackgroundSome epidemiologic studies have suggested an association between electromagnetic field exposure induced by high voltage power lines and childhood leukemia, but null results have also been yielded and the possibility of bias due to unmeasured confounders has been suggested.MethodsWe studied this relation in the Modena and Reggio Emilia municipalities of northern Italy, identifying the corridors along high voltage power lines with calculated magnetic field intensity in the 0.1-<0.2, 0.2-<0.4, and ≥ 0.4 microTesla ranges. We identified 64 cases of newly-diagnosed hematological malignancies in children aged <14 within these municipalities from 1986 to 2007, and we sampled four matched controls for each case, collecting information on historical residence and parental socioeconomic status of these subjects.ResultsRelative risk of leukemia associated with antecedent residence in the area with exposure ≥ 0.1 microTesla was 3.2 (6.7 adjusting for socioeconomic status), but this estimate was statistically very unstable, its 95% confidence interval being 0.4-23.4, and no indication of a dose-response relation emerged. Relative risk for acute lymphoblastic leukemia was 5.3 (95% confidence interval 0.7-43.5), while there was no increased risk for the other hematological malignancies.ConclusionsThough the number of exposed children in this study was too low to allow firm conclusions, results were more suggestive of an excess risk of leukemia among exposed children than of a null relation

    Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease

    Get PDF
    Background: Information on human papillomavirus (HPV) type distribution is necessary to evaluate the potential impact of current and future HPV vaccines. We estimated the relative contribution (RC) to invasive cervical cancer (ICC) and precancerous cervical lesions of the nine HPV types (HPV 6/11/16/18/31/33/45/52/58) included in an HPV vaccine currently under development. Methods: Estimations on ICC were based on an international study of 8,977 HPV positive cases and estimations on precancerous cervical lesions were extracted from a published meta-analysis including 115,789 HPV positive women. Globocan 2008 and 2010 World Population Prospects were used to estimate current and future projections of new ICC cases. Results: RC of the 9 HPV types in ICC was 89.4%, with 18.5% of cases positive for HPV 31/33/45/52/58. Regional variations were observed. RCs varied by histology, ranging between 89.1% in squamous cell carcinomas (SCC) and 95.5% in adenocarcinomas (ADC). HPV 16/18/45 were detected in 94.2% of ADC. RC of the 9 types altogether decreased with age (trend test p < 0.0001), driven by the decrease in older ages of HPV 16/18/45. In contrast, the RC of HPV 31/33/52/58 increased with age. Due to population growth alone, projected estimates of ICC cases attributable to the 9 types are expected to rise from 493,770 new cases in 2012 to 560,887 new cases in 2025. The RCs of individual high risk HPV types varied by cytological and histological grades of HPV-positive precancerous cervical lesions, and there was an under representation of HPV 18 and 45 compared to ICC. Conclusions: The addition of HPV 31/33/45/52/58 to HPV types included in current vaccines could prevent almost 90% of ICC cases worldwide. If the nine-valent vaccine achieves the same degree of efficacy than previous vaccines, world incidence rates could be substantially reduced
    corecore