103 research outputs found

    Heated Intracluster Gas and Radio Connections: the Singular case of MKW3s

    Full text link
    Similarly to other cluster of galaxies previously classified as cooling flow systems, the Chandra observation of MKW3s reveals that this object has a complex X-ray structure hosting both a X-ray cavity and a X-ray filament. Unlike the other clusters, however, the temperature map of the core of MKW3s shows the presence of extended regions of gas heated above the radially averaged gas temperature at any radius. As the cluster does not show evidences for ongoing major mergers Mazzotta et al. suggest a connection between the heated gas and the activity of the central AGN. Nevertheless, due to the lack of high quality radio maps, this interpretation was controversial. In this paper we present the results of two new radio observations of MKW3s at 1.28GHz and 604MHz obtained at the GMRT. Together with the Chandra observation and a separate VLA observation at 327MHz from Young, we show unequivocal evidences for a close connection between the heated gas region and the AGN activity and we briefly summarize possible implications.Comment: To appear in a special issue of the "Journal of the Korean Astronomical Society" (JKAS). Proceedings of the International conference on Cosmic Rays and Magnetic Fields in Large Scale Structure, Busan, Korea, 200

    Occurrence of radio minihalos in a mass-limited sample of galaxy clusters

    Get PDF
    We investigate the occurrence of radio minihalos --- diffuse radio sources of unknown origin observed in the cores of some galaxy clusters --- in a statistical sample of 58 clusters drawn from the Planck Sunyaev-Zel'dovich cluster catalog using a mass cut (M500>6×1014MM_{500}>6\times 10^{14} M_{\odot}). We supplement our statistical sample with a similarly-sized non-statistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for 9 clusters), we reanalyzed the Very Large Array archival radio data to determine if a mihinalo is present. Our total sample includes all 28 currently known and recently discovered radio minihalos, including 6 candidates. We classify clusters as cool-core or non-cool core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores - at least 12 out of 15 (80%) - in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool-cores or "warm cores". These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.Comment: 34 pages, accepted for publication in ApJ. Added a section "Definition of a minihalo" and an appendix "Radio size and average surface brigthtness of minihalos and halos

    Low frequency follow up of radio halos and relics in the GMRT Radio Halo Cluster Survey

    Full text link
    We performed GMRT low frequency observations of the radio halos, relics and new candidates belonging to the GMRT Radio Halo Cluster Sample first observed at 610 MHz. High sensitivity imaging was performed using the GMRT at 325 MHz and 240 MHz. The properties of the diffuse emission in each cluster were compared to our 610 MHz images and/or literature information available at other frequencies, in order to derive the integrated spectra over a wide frequency range.Beyond the classical radio halos, whose spectral index α\alpha is in the range 1.2÷1.3\sim1.2\div1.3 (Sνα\propto\nu^{-\alpha}), we found sources with α1.6÷1.9\alpha\sim1.6\div1.9. This result supports the idea that the spectra of the radiating particles in radio halos is not universal, and that inefficient mechanisms of particle acceleration are responsible for their origin. We also found a variety of brightness distributions, i.e. centrally peaked as well as clumpy halos. Even though the thermal and relativistic plasma tend to occupy the same cluster volume, in some cases a positional shift between the radio and X-ray peaks of emission is evident. Our observations also revealed the existence of diffuse cluster sources which cannot be easily classified either as halos or relics. New candidate relics were found in A1300 and in A1682, and in some clusters "bridges" of radio emission have been detected, connecting the relic and radio halo emission. Combining our new data with literature information, we derived the LogLX_{\rm X}-LogP325MHz_{\rm 325 MHz} correlation for radio halos, and investigated the possible trend of the spectral index of radio halos with the temperature of the intracluster medium.Comment: 19 pages, 10 figures, 5 tables, accepted for publication on A&

    Mapping the particle acceleration in the cool core of the galaxy cluster RX J1720.1+2638

    Full text link
    We present new deep, high-resolution radio images of the diffuse minihalo in the cool core of the galaxy cluster RX J1720.1+2638. The images have been obtained with the Giant Metrewave Radio Telescope at 317, 617 and 1280 MHz and with the Very Large Array at 1.5, 4.9 and 8.4 GHz, with angular resolutions ranging from 1" to 10". This represents the best radio spectral and imaging dataset for any minihalo. Most of the radio flux of the minihalo arises from a bright central component with a maximum radius of ~80 kpc. A fainter tail of emission extends out from the central component to form a spiral-shaped structure with a length of ~230 kpc, seen at frequencies 1.5 GHz and below. We find indication of a possible steepening of the total radio spectrum of the minihalo at high frequencies. Furthermore, a spectral index image shows that the spectrum of the diffuse emission steepens with the increasing distance along the tail. A striking spatial correlation is observed between the minihalo emission and two cold fronts visible in the Chandra X-ray image of this cool core. These cold fronts confine the minihalo, as also seen in numerical simulations of minihalo formation by sloshing-induced turbulence. All these observations favor the hypothesis that the radio emitting electrons in cluster cool cores are produced by turbulent reacceleration.Comment: 16 pages, 11 figures, accepted for publication in The Astrophysical Journa

    Discovery of a radio relic in the low mass, merging galaxy cluster PLCK G200.9-28.2

    Get PDF
    Radio relics at the peripheries of galaxy clusters are tracers of the elusive cluster merger shocks. We report the discovery of a single radio relic in the galaxy cluster PLCK G200.9-28.2 (z=0.22z=0.22, M500=2.7±0.2×1014MM_{500} = 2.7\pm0.2 \times 10^{14} M_{\odot}) using the Giant Metrewave Radio Telescope at 235 and 610 MHz and the Karl G. Jansky Very Large Array at 1500 MHz. The relic has a size of 1×0.28\sim 1 \times 0.28 Mpc, an arc-like morphology and is located at 0.9 Mpc from the X-ray brightness peak in the cluster. The integrated spectral index of the relic is 1.21±0.151.21\pm0.15. The spectral index map between 235 and 610 MHz shows steepening from the outer to the inner edge of the relic in line with the expectation from a cluster merger shock. Under the assumption of diffusive shock acceleration, the radio spectral index implies a Mach number of 3.3±1.83.3\pm1.8 for the shock. The analysis of archival XMM Newton data shows that PLCK G200.9-28.2 consists of a northern brighter sub-cluster, and a southern sub-cluster in a state of merger. This cluster has the lowest mass among the clusters hosting single radio relics. The position of the Planck Sunyaev Ze'ldovich effect in this cluster is offset by 700 kpc from the X-ray peak in the direction of the radio relic, suggests a physical origin for the offset. Such large offsets in low mass clusters can be a useful tool to select disturbed clusters and to study the state of merger.Comment: 10 pages, 7 figures, 4 tables. Accepted for publication in MNRA

    Are radio minihalos confined by cold fronts in galaxy clusters? Minihalos and large-scale sloshing in A3444 and MS 1455.0+2232

    Full text link
    We present radio and X-ray studies of A3444 and MS1455.0+2232, two galaxy clusters with radio minihalos in their cool cores. A3444 is imaged using the Giant Metrewave Radio Telescope (GMRT) at 333, 607 and 1300 MHz and the Very Large Array at 1435 MHz. Most of the minihalo is contained within r<120 kpc, but a fainter extension, stretching out to 380 kpc South-West of the center, is detected at 607 MHz. Using Chandra, we detect four X-ray sloshing cold fronts: three in the cool core at r=60, 120 and 230 kpc, and a fourth one at r=400 kpc - in the region of the southwestern radio extension - suggesting that the intracluster medium (ICM) is sloshing on a cluster-wide scale. The radio emission is contained within the envelope defined by these fronts. We also analyzed archival 383 MHz GMRT and Chandra observations of MS1455.0+2232, which exhibits a known minihalo with its bright part delineated by cold fronts inside the cool core, but with a faint extension beyond the core. Similarly to A3444, we find a cold front at r~425 kpc, containing the radio emission. Thus the entire diffuse radio emission seen in these clusters appears to be related to large-scale sloshing of the ICM. The radio spectrum of the A3444 minihalo is a power law with a steep index α=1.0±0.1\alpha=1.0\pm0.1. The spectrum steepens with increasing distance from the center, as expected if the minihalo originates from re-acceleration of relativistic particles by the sloshing-induced turbulence in the ICM.Comment: 29 pages, 15 figures, accepted for publication in Ap

    A shock front in the merging galaxy cluster Abell 754: X-ray and radio observations

    Full text link
    We present new Chandra X-ray and Giant Meterwave Radio Telescope (GMRT) radio observations of the nearby merging galaxy cluster Abell 754. Our X-ray data confirm the presence of a shock front by obtaining the first direct measurement of a gas temperature jump across the X-ray brightness edge previously seen in the imaging data. A754 is only the fourth galaxy cluster with confirmed merger shock fronts, and it has the weakest shock of those, with a Mach number M=1.57+0.16-0.12. In our new GMRT observation at 330 MHz, we find that the previously-known centrally located radio halo extends eastward to the position of the shock. The X-ray shock front also coincides with the position of a radio relic previously observed at 74 MHz. The radio spectrum of the post-shock region, using our radio data and the earlier results at 74 MHz and 1.4 GHz, is very steep. We argue that acceleration of electrons at the shock front directly from thermal to ultrarelativistic energies is problematic due to energy arguments, while reacceleration of preexisting relativistic electrons is more plausible.Comment: 10 pages, 8 figures, "emulateapj" format. Submitted to Ap

    The SKA view of cool-core clusters: evolution of radio mini-halos and AGN feedback

    Get PDF
    In about 70% of the population of relaxed, cool-core galaxy clusters, the brightest cluster galaxy (BCG) is radio loud, showing non-thermal radio jets and lobes ejected by the central active galactic nucleus (AGN). In recent years such relativistic plasma has been unambiguously shown to interact with the surrounding thermal intra-cluster medium (ICM) thanks to spectacular images where the lobe radio emission is observed to fill the cavities in the X-ray-emitting gas. This `radio feedback' phenomenon is widespread and is critical to understand the physics of the inner regions of galaxy clusters and the properties of the central BCG. At the same time, mechanically-powerful AGN are likely to drive turbulence in the central ICM which may also play a role for the origin of non-thermal emission on cluster-scales. Diffuse non-thermal emission has been observed in a number of cool-core clusters in the form of a radio mini-halo surrounding the radio-loud BCG on scales comparable to that of the cooling region. Large mini-halo samples are necessary to establish their origin and connection with the cluster thermal properties and dynamics, especially in light of future X-ray characterization of the cluster cores as it is expected by Athena-XIFU. We show that All-Sky reference survey at Band 2 with SKA1 at confusion limit (rms ~2 {\mu}Jy per beam) has the potential to detect up to ~620 mini-halos at redshift z<0.6, whereas Deep Tier reference surveys at Band 1/2 with SKA1 at sub-arcsec resolution (rms ~0.2 {\mu}Jy per beam) will allow a complete census of the radio-loud BCGs at any redshift down to a 1.4 GHz power of 10^{22} W/Hz. We further anticipate that SKA2 might detect up to ~1900 new mini-halos at redshift z<0.6 and characterize the radio-mode AGN feedback in every cluster and group up to redshift z ~1.7 (the highest-z where virialized clusters are currently detected).Comment: 17 pages, 5 figures. To appear as part of 'Continuum Science' in Proceedings of "Advancing Astrophysics with the SKA (AASKA14)", PoS(AASKA14)07

    Recurrent radio outbursts at the center of the NGC1407 galaxy group

    Full text link
    We present deep Giant Metrewave Radio Telescope (GMRT) radio observations at 240, 330 and 610 MHz of the complex radio source at the center of the NGC1407 galaxy group. Previous GMRT observations at 240 MHz revealed faint, diffuse emission enclosing the central twin-jet radio galaxy. This has been interpreted as an indication of two possible radio outbursts occurring at different times. Both the inner double and diffuse component are detected in the new GMRT images at high levels of significance. Combining the GMRT observations with archival Very Large Array data at 1.4 and 4.9 GHz, we derive the total spectrum of both components. The inner double has a spectral index \alpha=0.7, typical for active, extended radio galaxies, whereas the spectrum of the large-scale emission is very steep, with \alpha=1.8 between 240 MHz and 1.4 GHz. The radiative age of the large-scale component is very long, ~300 Myr, compared to ~30 Myr estimated for the central double, confirming that the diffuse component was generated during a former cycle of activity of the central galaxy. The current activity have so far released an energy which is nearly one order of magnitude lower than that associated with the former outburst. The group X-ray emission in the Chandra and XMM-Newton images and extended radio emission show a similar swept-back morphology. We speculate that the two structures are both affected by the motion of the group core, perhaps due to the core sloshing in response to a recent encounter with the nearby elliptical galaxy NGC1400.Comment: 15 pages, 12 figures and 5 tables. Accepted for publication in Ap
    corecore