3,976 research outputs found
Dynamical locality of the nonminimally coupled scalar field and enlarged algebra of Wick polynomials
We discuss dynamical locality in two locally covariant quantum field
theories, the nonminimally coupled scalar field and the enlarged algebra of
Wick polynomials. We calculate the relative Cauchy evolution of the enlarged
algebra, before demonstrating that dynamical locality holds in the nonminimally
coupled scalar field theory. We also establish dynamical locality in the
enlarged algebra for the minimally coupled massive case and the conformally
coupled massive case.Comment: 39p
Study for an experiment to measure the KL → π0νν¯ decay at CERN
The K → πνν decays are flavour-changing neutral current (FCNC) processes, very suppressed in the Standard Model (SM). The latter, moreover, predicts their branching ratios (BR) with high precision, making them excellent probes of new physics. The NA62 experiment at the CERN Super Proton Synchrotron (SPS), currently taking data, is measuring the BR of the K+ → π+νν¯ decay. The KOTO experiment at JPARC, using a low-energy KL beam, foresees to reach the SM sensitivity for KL → π0νν¯ by 2021. A complementary measurement of KL → π0νν¯ exploiting part of the NA62 existing apparatus could be possible at the SPS with a high-energy KL beam. Ongoing studies indicate the possibility of observing 60 decay events in 5 years of data taking with a signal-to-background ratio of 1
Causal Perturbation Theory and Differential Renormalization
In Causal Perturbation Theory the process of renormalization is precisely
equivalent to the extension of time ordered distributions to coincident points.
This is achieved by a modified Taylor subtraction on the corresponding test
functions. I show that the pullback of this operation to the distributions
yields expressions known from Differential Renormalization. The subtraction is
equivalent to BPHZ subtraction in momentum space. Some examples from Euclidean
scalar field theory in flat and curved spacetime will be presented.Comment: 15 pages, AMS-LaTeX, feynm
Bondi-Metzner-Sachs symmetry, holography on null-surfaces and area proportionality of "light-slice" entropy
It is shown that certain kinds of behavior, which hitherto were expected to
be characteristic for classical gravity and quantum field theory in curved
spacetime, as the infinite dimensional Bondi-Metzner-Sachs symmetry, holography
on event horizons and an area proportionality of entropy, have in fact an
unnoticed presence in Minkowski QFT. This casts new light on the fundamental
question whether the volume propotionality of heat bath entropy and the
(logarithmically corrected) dimensionless area law obeyed by
localization-induced thermal behavior are different geometric parametrizations
which share a common primordeal algebraic origin. Strong arguments are
presented that these two different thermal manifestations can be directly
related, this is in fact the main aim of this paper. It will be demonstrated
that QFT beyond the Lagrangian quantization setting receives crucial new
impulses from holography onto horizons. The present paper is part of a project
aimed at elucidating the enormous physical range of "modular localization". The
latter does not only extend from standard Hamitonian heat bath thermal states
to thermal aspects of causal- or event- horizons addressed in this paper. It
also includes the recent understanding of the crossing property of formfactors
whose intriguing similarity with thermal properties was, although sometimes
noticed, only sufficiently understood in the modular llocalization setting.Comment: 42 pages, changes, addition of new results and new references, in
this form the paper will appear in Foundations of Physic
The XMM-Newton Detection of Diffuse Inverse Compton X-rays from Lobes of the FR-II Radio Galaxy 3C98
The XMM-Newton observation of the nearby FR-II radio galaxy 3C 98 is
reported. In two exposures on the target, faint diffuse X-ray emission
associated with the radio lobes was significantly detected, together with a
bright X-ray active nucleus, of which the 2 -- 10 keV intrinsic luminosity is
(4 -- 8) \times 10^{42} erg s-1. The EPIC spectra of the northern and southern
lobes are reproduced by a single power law model modified by the Galactic
absorption, with a photon index of 2.2-0.5+0.6 and 1.7-0.6+0.7 respectively.
These indices are consistent with that of the radio synchrotron spectrum, 1.73
+- 0.01 The luminosity of the northern and southern lobes are measured to be
8.3-2.6+3.3 \times 10^{40} erg s-1 and 9.2-4.3+5.7 \times 10^{40} erg s-1,
respectively, in the 0.7 -- 7 keV range. The diffuse X-ray emission is
interpreted as an inverse-Compton emission, produced when the
synchrotron-emitting energetic electrons in the lobes scatter off the cosmic
microwave background photons. The magnetic field in the lobes is calculated to
be about 1.7 \mu G, which is about 2.5 times lower than the value estimated
under the minimum energy condition. The energy density of the electrons is
inferred to exceed that in the magnetic fields by a factor of 40 -- 50.Comment: 23 pages, 7 figures. Accepted for publication in the Astrophysical
Journa
Transcriptional Regulation of Glucose Metabolism: The Emerging Role of the HMGA1 Chromatin Factor
HMGA1 (high mobility group A1) is a nonhistone architectural chromosomal protein that functions mainly as a dynamic regulator of chromatin structure and gene transcription. As such, HMGA1 is involved in a variety of fundamental cellular processes, including gene expression, epigenetic regulation, cell differentiation and proliferation, as well as DNA repair. In the last years, many reports have demonstrated a role of HMGA1 in the transcriptional regulation of several genes implicated in glucose homeostasis. Initially, it was proved that HMGA1 is essential for normal expression of the insulin receptor (INSR), a critical link in insulin action and glucose homeostasis. Later, it was demonstrated that HMGA1 is also a downstream nuclear target of the INSR signaling pathway, representing a novel mediator of insulin action and function at this level. Moreover, other observations have indicated the role of HMGA1 as a positive modulator of the Forkhead box protein O1 (FoxO1), a master regulatory factor for gluconeogenesis and glycogenolysis, as well as a positive regulator of the expression of insulin and of a series of circulating proteins that are involved in glucose counterregulation, such as the insulin growth factor binding protein 1 (IGFBP1), and the retinol binding protein 4 (RBP4). Thus, several lines of evidence underscore the importance of HMGA1 in the regulation of glucose production and disposal. Consistently, lack of HMGA1 causes insulin resistance and diabetes in humans and mice, while variations in the HMGA1 gene are associated with the risk of type 2 diabetes and metabolic syndrome, two highly prevalent diseases that share insulin resistance as a common pathogenetic mechanism. This review intends to give an overview about our current knowledge on the role of HMGA1 in glucose metabolism. Although research in this field is ongoing, many aspects still remain elusive. Future directions to improve our insights into the pathophysiology of glucose homeostasis may include epigenetic studies and the use of "omics" strategies. We believe that a more comprehensive understanding of HMGA1 and its networks may reveal interesting molecular links between glucose metabolism and other biological processes, such as cell proliferation and differentiation
Subthreshold Ionization of Weakly Bound Complexes: StochasticAnalysis of the Role of the Rydberg Quasicontinuum
Recent evidence for subthreshold ionization (i.e. electron loss at energies less than anticipated from
vertical transitions assuming adiabatic separation of nuclear motion) points at the role of nonadiabatic
coupling of high Rydberg terms of molecules. Sinai's billiard model for the chaotic motion of the Rydberg
electron, that leads to a diffusion over the energy ladder as a result of electronic–vibrational exchange, is
suggested as the classical mechanism of autoionization. A quantum expression for the branching ratio
between autoionization and spontaneous fluorescence is obtained and discussed with reference to
experimental results on associative ionization in atomic collisions and on laser ionization of van der Waals
diatomics
Revealing the magnetic field in a distant galaxy cluster: discovery of the complex radio emission from MACS J0717.5 +3745
Aims. To study at multiple frequencies the radio emission arising from the
massive galaxy cluster MACS J0717.5+3745 (z=0.55). Known to be an extremely
complex cluster merger, the system is uniquely suited for an investigation of
the phenomena at work in the intra-cluster medium (ICM) during cluster
collisions. Methods. We use multi-frequency and multi-resolution data obtained
with the Very Large Array radio telescope, and X-ray features revealed by
Chandra, to probe the non-thermal and thermal components of the ICM, their
relations and interactions. Results. The cluster shows highly complex radio
emission. A bright, giant radio halo is detected at frequencies as high as 4.8
GHz. MACS J0717.5+3745 is the most distant cluster currently known to host a
radio halo. This radio halo is also the most powerful ever observed, and the
second case for which polarized radio emission has been detected, indicating
that the magnetic field is ordered on large scales.Comment: 14 pages, 13 figures, Astronomy and Astrophysics, accepte
Quantum charges and spacetime topology: The emergence of new superselection sectors
In which is developed a new form of superselection sectors of topological
origin. By that it is meant a new investigation that includes several
extensions of the traditional framework of Doplicher, Haag and Roberts in local
quantum theories. At first we generalize the notion of representations of nets
of C*-algebras, then we provide a brand new view on selection criteria by
adopting one with a strong topological flavour. We prove that it is coherent
with the older point of view, hence a clue to a genuine extension. In this
light, we extend Roberts' cohomological analysis to the case where 1--cocycles
bear non trivial unitary representations of the fundamental group of the
spacetime, equivalently of its Cauchy surface in case of global hyperbolicity.
A crucial tool is a notion of group von Neumann algebras generated by the
1-cocycles evaluated on loops over fixed regions. One proves that these group
von Neumann algebras are localized at the bounded region where loops start and
end and to be factorial of finite type I. All that amounts to a new invariant,
in a topological sense, which can be defined as the dimension of the factor. We
prove that any 1-cocycle can be factorized into a part that contains only the
charge content and another where only the topological information is stored.
This second part resembles much what in literature are known as geometric
phases. Indeed, by the very geometrical origin of the 1-cocycles that we
discuss in the paper, they are essential tools in the theory of net bundles,
and the topological part is related to their holonomy content. At the end we
prove the existence of net representations
- …