11 research outputs found
Cardioprotective role of heat shock proteins in atrial fibrillation: From mechanism of action to therapeutic and diagnostic t
Atrial fibrillation (AF) is the most common age-related cardiac arrhythmia worldwide and is associated with ischemic stroke, heart failure, and substantial morbidity and mortality. Unfortunately, current AF therapy is only moderately effective and does not prevent AF progression from recurrent intermittent episodes (paroxysmal) to persistent and finally permanent AF. It has been recognized that AF persistence is related to the presence of electropathology. Electropathology is defined as structural damage, including degradation of sarcomere structures, in the atrial tissue which, in turn, impairs electrical conduction and subsequently the contractile function of atrial cardiomyocytes. Recent research findings indicate that derailed proteostasis underlies structural damage and, consequently, electrical conduction impairment. A healthy proteostasis is of vital importance for proper function of cells, including cardiomyocytes. Cells respond to a loss of proteostatic control by inducing a heat shock response (HSR), which results in heat shock protein (HSP) expression. Emerging clinical evidence indicates that AF-induced proteostasis derailment is rooted in exhaustion of HSPs. Cardiomyocytes lose defense against structural damage-inducing pathways, which drives progression of AF and induction of HSP expression. In particular, small HSPB1 conserves sarcomere structures by preventing their degradation by proteases, and overexpression of HSPB1 accelerates recovery from structural damage in experimental AF model systems. In this review, we provide an overview of the mechanisms of action of HSPs in preventing AF and discuss the therapeutic potential of HSP-inducing compounds in clinical AF, as well as the potential of HSPs as biomarkers to discriminate between the various stages of AF and recurrence of AF after treatment
The future of atrial fibrillation therapy: Intervention on heat shock proteins influencing electropathology is the next in line
Atrial fibrillation (AF) is the most common agerelated cardiac arrhythmia accounting for one-third of hospitalisations. Treatment of AF is difficult, which is rooted in the progressive nature of electrical and structural remodelling, called electropathology, which makes the atria more vulnerable for AF. Importantly, structural damage of the myocardium is already present when AF is diagnosed for the first time. Currently, no effective therapy is known that can resolve this damage. Previously, we observed that exhaustion of cardioprotective heat shock proteins (HSPs) contributes to structural damage in AF patients. Also, boosting of HSPs, by the heat shock factor-1 activator geranylgeranylacetone, halted AF initiation and progression in experimental cardiomyocyte and dog models for AF. However, it is still unclear whether induction of HSPs also prolongs the arrhythmia-free interval after, for example, cardioversion of AF. In this review, we discuss the role of HSPs in the pathophysiology of AF and give an outline of the HALT&REVERSE project, initiated by the HALT&REVERSE Consortium and the AF Innovation Platform. This project will elucidate whether HSPs (1) reverse cardiomyocyte electropathology and thereby halt AF initiation and progression and (2) represent novel biomarkers that predict the outcome of AF conversion and/or occurrence of post-surgery AF
Daily Supplementation of L-Glutamine in Atrial Fibrillation Patients: The Effect on Heat Shock Proteins and Metabolites
Pharmaco-therapeutic strategies of atrial fibrillation (AF) are moderately effective and do not prevent AF onset and progression. Therefore, there is an urgent need to develop novel therapies. Previous studies revealed heat shock protein (HSP)-inducing compounds to mitigate AF onset and progression. Such an HSP inducing compound is L-glutamine. In the current study we investigate the effect of L-glutamine supplementation on serum HSP27 and HSP70 levels and metabolite levels in patients with AF patients (n = 21). Hereto, HSP27
Atrial fibrillation fingerprinting; spotting bio-electrical markers to early recognize atrial fibrillation by the use of a bottom-up approach (AFFIP): Rationale and design
Background: The exact pathophysiology of atrial fibrillation (AF) remains incompletely understood and treatment of AF is associated with high recurrence rates. Persistence of AF is rooted in the presence of electropathology, defined as complex electrical conduction disorders caused by structural damage of atrial tissue. The atrial fibrillation fingerprinting (AFFIP) study aims to characterize electropathology, enabling development of a novel diagnostic instrument to predict AF onset and early progression. Hypotheses: History of AF, development of post-operative AF, age, gender, underlying heart disease, and other clinical characteristics impact the degree of electropathology. Methods: This study is a prospective observational study with a planned duration of 48 months. Three study groups are defined: (1) patients with (longstanding) persistent AF, (2) patients with paroxysmal AF, and (3) patients without a history of AF, all undergoing open-chest cardiac surgery. Intra-operative high-resolution epicardial mapping is performed to identify the patient-specific electrical profile, whereas the patient-specific biological profile is assessed by evaluating proteostasis markers in blood samples and atrial appendage tissue samples. Post-operative continuous rhythm monitoring is perfo
The Impact of Filter Settings on Morphology of Unipolar Fibrillation Potentials
Using unipolar atrial electrogram morphology as guidance for ablative therapy is regaining interest. Although standardly used in clinical practice during ablative therapy, the impact of filter settings on morphology of unipolar AF potentials is unknown. Thirty different filters were applied to 2,557,045 high-resolution epicardial AF potentials recorded from ten patients. Deflections with slope ≤ − 0.05 mV/ms and amplitude ≥ 0.3 mV were marked. High-pass filtering decreased the number of detected potentials, deflection amplitude, and percentage of fractionated potentials (≥ 2 deflections) as well as fractionation delay time (FDT) and increased percentage of single potentials. Low-pass filtering decreased the number of potentials, percentage of fractionated potentials, whereas deflection amplitude, percentage of single potentials, and FDT increased. Notch filtering (50 Hz) decreased the number of potentials and deflection amplitude, whereas the percentage of complex fractionated potentials (≥ 3 deflections) increased. Filtering significantly impacted morphology of unipolar fibrillation potentials, becoming a potential source of error in identification of ablative targets.
Heterogeneity in Conduction Underlies Obesity-Related Atrial Fibrillation Vulnerability
BACKGROUND: Obese patients are more vulnerable to development of atrial fibrillation but pathophysiology underlying this relation is only partly understood. The aim of this study is to compare the severity and extensiveness of conduction disorders between obese patients and nonobese patients measured at a high-resolution scale. METHODS: Patients (N=212) undergoing cardiac surgery (male:161, 63±11 years) underwent epicardial mapping of the right atrium, Bachmann bundle, and left atrium during sinus rhythm. Conduction delay (CD) was defined as interelectrode conduction time of 7 to 11 ms and conduction block (CB) as conduction time ≥12 ms. Prevalence of CD/CB, continuous CDCB (cCDCB), length of CD/CB/cCDCB lines, and severity of CB were analyzed. RESULTS: In obese patients, the overall incidence of CD (3.1% versus 2.6%; P=0
Evaluating Serum Heat Shock Protein Levels as Novel Biomarkers for Atrial Fibrillation
Background: Staging of atrial fibrillation (AF) is essential to understanding disease
progression and the accompanied increase in therapy failure. Blood-based heat shock protein
(HSP) levels may enable staging of AF and the identification of patients with higher risk for AF
recurrence after treatment. Objective: This study evaluates the relationship between serum HSP
levels, presence of AF, AF stage and AF recurrence following electrocardioversion (ECV) or pulmonary
vein isolation (PVI). Methods: To determine HSP27, HSP70, cardiovascular (cv)HSP and HSP60
levels, serum samples were collected from control patients without AF and patients with paroxysmal
atrial fibrillation (PAF), persistent (PeAF) and longstanding persistent (LSPeAF) AF, presenting for
ECV or PVI, prior to intervention and at 3-, 6- and 12-months post-PVI. Results: The study population
(n = 297) consisted of 98 control and 199 AF patients admitted for ECV (n = 98) or PVI (n = 101).
HSP27, HSP70, cvHSP and HSP60 serum levels did not differ between patients without or with
PAF, PeAF or LSPeAF. Additionally, baseline HSP levels did not correlate with AF recurrence after
ECV or PVI. However, in AF patients with AF recurrence, HSP27 levels were significantly elevated
post-PVI relative to baseline, compared to patients without recurrence. Conclusions: No association
was observed between baseline HSP levels and the presence of AF, AF stage or AF recurrence.
However, HSP27 levels were increased in serum samples of patients with AF recurrence within one
year after PVI, suggesting that HSP27 levels may predict recurrence of AF after ablative therap
Diagnosis and therapy of atrial fibrillation: The past, the present and the future
Atrial fibrillation (AF) is the most common age-related cardiac arrhythmia. It is a progressive disease, which hampers successful treatment. The progression of AF is caused by the accumulation of damage in cardiomyocytes which makes the atria more vulnerable for AF. Especially structural remodeling and electrical remodeling, together called electropathology, are sustainable in the atria and impair functional recovery to sinus rhythm after cardioversion. The exact electropathological mechanisms underlying persistence of AF are at present unknown. High resolution wavemapping studies in patients with different types of AF showed that longitudinal dissociation in conduction and epicardial breakthrough were the key elements of the substrate of longstanding persistent AF. A double layer of electrically dissociated waves propagating transmurally can explain persistence of AF (Double Layer Hypothesis) but the molecular mechanism is unknown. Derailment of proteasis -defined as the homeostasis in protein synthesis, folding, assembly, trafficking, guided by chaperones, and clearance by protein degradation systems - may play an important role in remodeling of the cardiomyocyte. As current therapies are not effective in attenuating AF progression, step-by-step analysis of this process, in order to identify potential targets for drug therapy, is essential. In addition, novel mapping approaches enabling assessment of the degree of electropathology in the individual patient are mandatory to develop patient-tailored therapies. The aims of this review are to 1) summarize current knowledge of the electrical and molecular mechanisms underlying AF, 2) discuss the shortcomings of present diagnostic instruments and therapeutic options and 3) to present potential novel diagnostic tools and therapeutic targets
Cell-Free Circulating Mitochondrial DNA: A Potential Blood-Based Marker for Atrial Fibrillation
Atrial fibrillation (AF), the most common, progressive tachyarrhythmia is associated
with serious complications, such as stroke and heart failure. Early recognition of AF, essential to
prevent disease progression and therapy failure, is hampered by the lack of accurate diagnostic
serum biomarkers to identify the AF stage. As we previously showed mitochondrial dysfunction
to drive experimental and human AF, we evaluated whether cell-free circulating
Tachyarrhythmia in patients with congenital heart disease: Inevitable destiny?
The prevalence of patients with congenital heart disease (CHD) has increased over the last century. As a result, the number of CHD patients presenting with late, postoperative tachyarrhythmias has increased as well. The aim of this review is to discuss the present knowledge on the mechanisms underlying both atrial and ventricular tachyarrhythmia in patients with CHD and the advantages and disadvantages of the currently available invasive treatment modalities