410 research outputs found
Insights into substrate binding to the oxygen-evolving complex of photosystem II from ammonia inhibition studies
© 2014 American Chemical Society. Water oxidation in Photosystem II occurs at the oxygen-evolving complex (OEC), which cycles through distinct intermediates, S0-S4. The inhibitor ammonia selectively binds to the S2 state at an unresolved site that is not competitive with substrate water. By monitoring the yields of flash-induced oxygen production, we show that ammonia decreases the net efficiency of OEC turnover and slows the decay kinetics of S2 to S1. The temperature dependence of biphasic S2 decay kinetics provides activation energies that do not vary in control and ammonia conditions. We interpret our data in the broader context of previous studies by introducing a kinetic model for both the formation and decay of ammonia-bound S2. The model predicts ammonia binds to S2 rapidly (t1/2 = 1 ms) with a large equilibrium constant. This finding implies that ammonia decreases the reduction potential of S2 by at least 2.7 kcal mol-1 (\u3e120 mV), which is not consistent with ammonia substitution of a terminal water ligand of Mn(IV). Instead, these data support the proposal that ammonia binds as a bridging ligand between two Mn atoms. Implications for the mechanism of O-O bond formation are discussed
Photosynthetic water oxidation: Binding and activation of substrate waters for O-O bond formation
© 2015 The Royal Society of Chemistry. Photosynthetic water oxidation occurs at the oxygen-evolving complex (OEC) of Photosystem II (PSII). The OEC, which contains a Mn4CaO5 inorganic cluster ligated by oxides, waters and amino-acid residues, cycles through five redox intermediates known as Si states (i = 0-4). The electronic and structural properties of the transient S4 intermediate that forms the O-O bond are not well understood. In order to gain insight into how water is activated for O-O bond formation in the S4 intermediate, we have performed a detailed analysis of S-state dependent substrate water binding kinetics taking into consideration data from Mn coordination complexes. This analysis supports a model in which the substrate waters are both bound as terminal ligands and react via a water-nucleophile attack mechanism
NH\u3csub\u3e3\u3c/sub\u3e Binding to the S\u3csub\u3e2\u3c/sub\u3e State of the O\u3csub\u3e2\u3c/sub\u3e-Evolving Complex of Photosystem II: Analogue to H\u3csub\u3e2\u3c/sub\u3eO Binding during the S\u3csub\u3e2\u3c/sub\u3e → S\u3csub\u3e3\u3c/sub\u3e Transition
© 2015 American Chemical Society. Ammonia binds directly to the oxygen-evolving complex of photosystem II (PSII) upon formation of the S2 intermediate, as evidenced by electron paramagnetic resonance spectroscopy. We explore the binding mode by using quantum mechanics/molecular mechanics methods and simulations of extended X-ray absorption fine structure spectra. We find that NH3 binds as an additional terminal ligand to the dangling Mn4, instead of exchanging with terminal water. Because water and ammonia are electronic and structural analogues, these findings suggest that water binds analogously during the S2 → S3 transition, leading to rearrangement of ligands in a carrousel around Mn4
Slow Equilibration between Spectroscopically Distinct Trap States in Reduced TiO\u3csub\u3e2\u3c/sub\u3e Nanoparticles
© 2017 American Chemical Society. Understanding the nature of charge carriers in nanoscale titanium dioxide is important for its use in solar energy conversion, photocatalysis, and other applications. UV-irradiation of aqueous, colloidal TiO2 nanoparticles in the presence of methanol gives highly reduced suspensions. Two distinct types of electron traps were observed and characterized by EPR and optical spectroscopies. The relative populations of the states depend on temperature, indicating a small energy difference, ΔH° = 3.0 ± 0.6 kcal/mol (130 ± 30 meV). Interconversion between the electron traps occurs slowly over the course of minutes to hours within the temperature range studied here, 0-50 °C. The slow time scale implies that interconversion involves changes in structure or stoichiometry, not just the movement of electrons. This occurrence of slow structural modification with changes in trap state occupancy is likely a general feature of reduced TiO2 systems at thermodynamic equilibria or photostationary states and should be considered in the design of TiO2-containing devices
S\u3csub\u3e3\u3c/sub\u3e State of the O\u3csub\u3e2\u3c/sub\u3e-Evolving Complex of Photosystem II: Insights from QM/MM, EXAFS, and Femtosecond X-ray Diffraction
© 2016 American Chemical Society. The oxygen-evolving complex (OEC) of photosystem II has been studied in the S3 state by electron paramagnetic resonance, extended X-ray absorption fine structure (EXAFS), and femtosecond X-ray diffraction (XRD). However, the actual structure of the OEC in the S3 state has yet to be established. Here, we apply hybrid quantum mechanics/molecular mechanics methods and propose a structural model that is consistent with EXAFS and XRD. The model supports binding of water ligands to the cluster in the S2 → S3 transition through a carousel rearrangement around Mn4, inspired by studies of ammonia binding
Potential Human Health Implications of Swine Health
Thrs study measured the relationship between subclinical pig health at slaughter and carcass contamination. 280 randomly selected carcasses were swabbed at three points during slaughter: skin pre-scald; pelvic cavity following removal of the distal colon and rectum, and pleural cavity, immediately before the final carcass rinse. Swabs were cultured quantitatively for Campylobacter spp. and Enterococcus spp. Campylobacter spp. were recovered from the pleural cavity in 58.9% (33/56) and 44 .6% (25/56) of pools from the bung cavity Enterococcus spp. were recovered from 66.1% (37/56) and 38.7% (22/56) of pleural and bung samples, respectively. The most common lesion cdentified was pleuritis/adhesions, with a total of 7.1% (186/2,625 total head). Linear regress1on showed that for every percentage point increase in lesions, there was a significant 4.4% increase in Enterococcus spp. and 5.1% increase 1n Campylobacter spp. contamination. Additionally, significant relationships were identified between pleuritis and the quantity (log CFU) of Enterococcus spp. present in the bung cavity or Campylobacter spp. in the pleural cavity
Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: A global meta-analysis
Ecological restoration projects often have variable and unpredictable outcomes, and these can limit the overall impact on biodiversity. Previous syntheses have investigated restoration effectiveness by comparing average restored conditions to average conditions in unrestored or reference systems. Here, we provide the first quantification of the extent to which restoration affects both the mean and variability of biodiversity outcomes, through a global meta-analysis of 83 terrestrial restoration studies. We found that, relative to unrestored (degraded) sites, restoration actions increased biodiversity by an average of 20%, while decreasing the variability of biodiversity (quantified by the coefficient of variation) by an average of 14%. As restorations aged, mean biodiversity increased and variability decreased relative to unrestored sites. However, restoration sites remained, on average, 13% below the biodiversity of reference (target) ecosystems, and were characterised by higher (20%) variability. The lower mean and higher variability in biodiversity at restored sites relative to reference sites remained consistent over time, suggesting that sources of variation (e.g. prior land use, restoration practices) have an enduring influence on restoration outcomes. Our results point to the need for new research confronting the causes of variability in restoration outcomes, and close variability and biodiversity gaps between restored and reference conditions
Energetics of the S\u3csub\u3e2\u3c/sub\u3e State Spin Isomers of the Oxygen-Evolving Complex of Photosystem II
© 2017 American Chemical Society. The S2 redox intermediate of the oxygen-evolving complex in photosystem II is present as two spin isomers. The S = 1/2 isomer gives rise to a multiline electron paramagnetic resonance (EPR) signal at g = 2.0, whereas the S = 5/2 isomer exhibits a broad EPR signal at g = 4.1. The electronic structures of these isomers are known, but their role in the catalytic cycle of water oxidation remains unclear. We show that formation of the S = 1/2 state from the S = 5/2 state is exergonic at temperatures above 160 K. However, the S = 1/2 isomer decays to S1 more slowly than the S = 5/2 isomer. These differences support the hypotheses that the S3 state is formed via the S2 state S = 5/2 isomer and that the stabilized S2 state S = 1/2 isomer plays a role in minimizing S2QA- decay under light-limiting conditions
- …